[1] | DeVoto E,Yokel R A. The Biological Speciation and Toxicokinetics of Aluminum[J]. Environ Health Perspect,1994,102(11):940-951. | [2] | Berthon G. Aluminium Speciation in Relation to Aluminium Bioavailability, Metabolism and Toxicity[J]. Chem Rev,2002,228(2/3):319-341. | [3] | Yousef M I, EI-Morsy A M A, Hassan M S. Aluminium-Induced Deterioration in Reproductive Performance and Seminal Plasma Biochemistry of Male Rabbits:Protective Role of Ascorbic Acid[J]. Toxicology,2005,215(1/2):97-107. | [4] | Altschuler E. Aluminum-containing Antacids as a Cause of Idiopathic Parkinson's Disease[J]. Med Hypotheses,1999,53(1):22-23. | [5] | Walton J R. Aluminum in Hippocampal Neurons from Humans with Alzheimer's Disease[J]. NeuroToxicology,2006,27(3):385-394. | [6] | Exley C,House E R. Aluminium in the Human Brain[J]. Monatsh Chem,2011,142(4):357-363. | [7] | Wang B,Deng X. Effects of Chronic Aluminum Exposure on Memory Through Multiple Signal Transduction Pathways[J]. Environ Toxicol Pharmaeol,2010,29(3):308-313. | [8] | Tomljenovic L. Aluminum and Alzheimer's Disease:After a Century of Controversy, Is there a Plausible Link?[J]. Alzheimer's Dis,2011,23(4):567-598. | [9] | Tasleem A Z,Dorothy T,Curtis A,et al.Aluminum Negatively Impacts Calcium Utilization and Bone in Calcium-Deficient Rats[J]. Nutr Res,2004,24(3):243-259. | [10] | Guo C H, Hsu G S W, Chuang C J, et al. Aluminum Accumulation Induced Testicular Oxidative Stress and Altered Selenium Metabolism in Mice[J]. Environ Toxicol Pharmaeol,2009,27(2):176-181. | [11] | Pochenneder C,Gunse B,Corrales L,et al.A Glance into Aluminum Toxicity and Resistance in Plants[J]. Sci Total Environ,2008,400(1/2/3):356-368. | [12] | Barcalo J,Poschenrieder C. Fast Root Growth Responses, Root Exudates, and Internal Detoxification as Clues to the Mechanisms of Aluminium Toxicity and Resistance:A Review[J]. Environ Exp Bot,2002,48(1):75-92. | [13] | Valeur B,Leray I. Design Principles of Fluorescent Molecular Sensors for Cation Recognition[J]. Coord Chem Rev,2000,205(1):3-40. | [14] | Seol H,Shin S C,Shim Y B. Trace Analysis of Al(Ⅲ) Ions Based on the Redox Current of a Conducting Polymer[J]. Electroanalysis,2004,16(24):2051-2057. | [15] | Goswami S,Paul S,Manna A. Selective “Naked eye” Detection of Al(Ⅲ) and PPi in Aqueous Media on a Rhodamine-Isatin Hybrid Moiety[J]. RSC Adv,2013,3(27):10639-10643. | [16] | Lee S,Ahn A,Choi M Y. Direct Observation of Aluminium Ions Produced via Pulsed Laser Ablation in Liquid:A ‘Turn-on’ Fluorescence Study[J]. Phys Chem Chem Phys,2012,14(45):15677-15681. | [17] | Yang Z,Cao J,He Y,et al.Macro-/Micro-Environment-Sensitive Chemosensing and Biological Imaging[J]. Chem Soc Rev,2014,43(13):4563-4601. | [18] | Liu Z,He W,Pei M,et al.A Fluorescent Sensor with a Detection Level of pM for Cd2+ and nM for Cu2+ Based on Different Mechanisms[J]. Chem Commun,2015,51(75):14227-14230. | [19] | Cheng H,Qian Y. A Novel BODIPY-Schiff Base-Based Colorimetric and Fluorometric Dosimeter for Hg2+, Fe3+ and Au3+[J]. RSC Adv,2015,5(101):82887-82893. | [20] | Chang Y,Wu S,Hu C,et al.A New Bifunctional Schiff Base as a Colorimetric and Fluorescence Sensor for Al3+ and CN-[J]. Inorg Chim Acta,2015,432:25-31. | [21] | He L,Liu C,Xin J. A Novel Turn-on Colorimetric and Fluorescent Sensor for Fe3+ and Al3+ with Solvent-Dependent Binding Properties and Its Sequentialresponse to Carbonate[J]. Sens Actuator B,2015,213:181-187. | [22] | Hung P,Chir J,Ting W,et al.A Selective Colorimetric and Ratiometric Fluorescent Chemosensor for Detectionof Al3+ Ion[J]. J Lumin,2015,158:371-375. | [23] | Upadhyay K K,Kumar A. Pyrimidine Based Highly Sensitive Fluorescent Receptor for Al3+ Showing Dual Signalling Mechanism[J]. Org Biomol Chem,2010,8(21):4892-4897. | [24] | Sahana A,Banerjee A,Lohar S,et al.Rhodamine-Based Fluorescent Probe for Al3+ Through Time-Dependent PET-CHEF-FRET Processes and Its Cell Staining Application[J]. Inorg Chem,2013,52(7):3627-3633. | [25] | Das S,Sahana A,Banerjee A,Banerjee A,et al.Ratiometric Fluorescence Sensing and Intracellular Imaging of Al3+ Ions Driven by an Intramolecular Excimer Formation of a Pyrimidine-Pyrene Scaffold[J]. Dalton Trans,2013,42(14):4757-4763. | [26] | Edward J T,Gauthier M,Chubb F L,et al.Synthesis of New Acylhydrazones as Iron-Chelating Compounds[J]. J Chem Eng Data,1988,33(4):538-540. | [27] | Melnyk P,Leroux V,Sergheraerta C,et al.Design, Synthesis and in Vitro Antimalarial Activity of an Acylhydrazone Library[J]. Bioorg Med Chem Lett,2006,16(1):31-35. | [28] | Tiwari K,Mishra M,Singh V P. A Highly Sensitive and Selective Fluorescent Sensor for Al3+ Ions Based on Thiophene-2-carboxylic Acid Hydrazide Schiff Base[J]. RSC Adv,2013,3:12124-12132. | [29] | Rodríguez-Córdoba W,Zugazagoitia J S,Collado-Fregoso E,et al.Excited State Intramolecular Proton Transfer in Schiff Bases. Decay of the Locally Excited Enol State Observed by Femtosecond Resolved Fluorescence[J]. J Phys Chem A,2007,111(28):6241-6247. | [30] | Fan J,Sun W,Hu M. An ICT-Based Ratiometric Probe for Hydrazine and Its Application in Live Cells[J]. Chem Commun,2012,48(65):8117-8119. |
|