| [1] |
丁孟贤. 聚酰亚胺-化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006.
|
|
DING M X. Polyimide-relationship of chemistry, structure and properties, and materials[M]. Beijing: Science Press, 2006.
|
| [2] |
BAO F, DONG Z X, ZHANG R, et al. Preparation and properties of high-performance polyimide copolymer fibers containing rigid pyrimidine and benzoxazole moieties with hydrogen bonding[J]. J Mater Res Technol, 2021, 12: 1143-1156.
|
| [3] |
BAO F, ZHANG R, DONG Z X, et al. Comparison of high-performance polyimide copolymer fibers containing pyrimidine moieties based on coplanar structures[J]. Polymer, 2021, 231: 124113-124122.
|
| [4] |
ZHAO Y, DONG Z X, LI G M, et al. Atomic oxygen resistance of polyimide fibers with phosphorus-containing side chains[J]. RSC Adv, 2017, 7(9): 5437-5444.
|
| [5] |
DONG H, DONG, LI X T, et al. Preparation of high-temperature resistant polyimide fibers by introducing the p-phenylenediamine into kapton-type polyimide[J]. ACS Appl Polym Mater, 2024, 6: 2371-2380.
|
| [6] |
LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Prog Polym Sci, 2012, 37(7): 907-974.
|
| [7] |
DING M X. Isomeric polyimides[J]. Prog Polym Sci, 2007, 32(6): 623-668.
|
| [8] |
SON G, KIM C G. Protective effect of nanocomposite film from the low earth orbit environment[J]. J Compos Mater, 2015, 49(19): 2297-2306.
|
| [9] |
SERFONTEIN Z, KINGSTON J, HOBBS S, et al. Effects of long-term exposure to the low-earth orbit environment on drag augmentation systems[J]. Acta Astronaut, 2022, 195: 540-546.
|
| [10] |
BANKS B A, SNYDER A, MILLER S K, et al. Atomic-oxygen undercutting of protected polymers in low earth orbit[J]. J Spacecraft Rockets, 2004, 41(3): 335-339.
|
| [11] |
HUANG T T, GU Y H, ZHANG Y Z, et al. Reactive molecular dynamics simulation on the disintegration of kapton-POSS composites during atomic oxygen impact [J]. J Phys Chem C, 2025, 129: 3626-3634.
|
| [12] |
SERENKO O A, ANDROPOVA U S, AYSIN R R, et al. Stabilization mechanisms of polyimide-metallosiloxane nanocomposites against atomic oxygen impact[J]. Appl Surf Sci, 2025, 685: 161992-162002.
|
| [13] |
ANDROPOVA U S, CHERNIK V N, NOVIKOV L S, et al. Effect of nanoparticles and siloxane groups on the atomic oxygen erosion resistance of copolyimides[J]. Polym Degrad Stabil, 2024, 221: 110659-110668.
|
| [14] |
MINTON T K, SCHWARTZENTRUBER T E, XU C B. On the utility of coated POSS-polyimides for vehicles in very low earth orbit[J]. ACS Appl Polym Mater, 2021, 13: 51673-51684.
|
| [15] |
DEVAPAL D, PACKIRISAMY S, KORULLA R M, et al. Atomic oxygen resistant coating from poly(tetramethyldisilylene-co-styrene)[J]. J Appl Polym Sci, 2004, 94(6): 2368-2375.
|
| [16] |
HU L F, LI M S, XU C H, et al. A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion[J]. Surf Coat Technol, 2009, 203(22): 3338-3343.
|
| [17] |
GOUZMAN I, GROSSMAN E, LEMPERT G, et al. Atomic oxygen durability of uncoated and coated high-frequency circuit materials[J]. High Perform Polym, 2001, 13(3): S505-S516.
|
| [18] |
QIAN M, ZHANG Y, MAO X J, et al. Flexible photoelectronic material device and investigation method for space applications[J]. Prog Aerosp Sci, 2023, 139: 100901.
|
| [19] |
MINTON T K, WU B H, ZHANG J M, et al. Protecting polymers in space with atomic layer deposition coatings[J]. ACS Appl Mater Interfaces, 2010, 2(9): 2515-2520.
|
| [20] |
COOPER R, UPADHYAYA H P, MINTON T K, et al. Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings[J]. Thin Solid Films, 2008, 516(12): 4036-4039.
|
| [21] |
YAN C, LI J L, WANG H B, et al. Growth and atomic oxygen erosion resistance of Al2O3-doped TiO2 thin film formed on polyimide by atomic layer deposition[J]. RSC Adv, 2024, 14(47): 34833-34842.
|
| [22] |
MINTON T K, WRIGHT M E, TOMCZAK S J, et al. Atomic oxygen effects on POSS polyimides in low earth orbit[J]. ACS Appl Mater Interfaces, 2012, 4: 492-502.
|
| [23] |
QIAN M, MURRAY V J, WEI W, et al. Resistance of POSS polyimide blends to hyperthermal atomic oxygen attack[J]. ACS Appl Polym Mater, 2016, 8: 33982-33992.
|
| [24] |
LIU F F, GUO H Q, ZHAO Y, et al. Enhanced resistance to the atomic oxygen exposure of POSS/polyimide composite fibers with surface enrichment through wet spinning[J]. Eur Polym J, 2018, 105: 115-125.
|
| [25] |
FEHER F J, WYNDHAM K D, SOULIVONG D, et al. Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12)[J]. J Chem Soc Dalton, 1999, 9: 1491-1497.
|
| [26] |
FEHER F, BUDZICHOWSKI T A. Syntheses of highly-functionalized polyhedral oligosilsesquioxanes[J]. J Organomet Chem, 1989, 379(1/2): 33-40.
|
| [27] |
FISCHER H R, TEMPELAARS K, KERPERSHOEK A, et al. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers[J]. ACS Appl Polym Mater, 2010, 2(8): 2218-2225.
|
| [28] |
MIYAZAKI E, TAGAWA M, YOKOTA K, et al. Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen[J]. Acta Astronaut, 2010, 66(5/6): 922-928.
|
| [29] |
SHIMAMURA H, NAKAMURA T. Mechanical properties degradation of polyimide films irradiated by atomic oxygen[J]. Polym Degrad Stabil, 2009, 94(9): 1389-1396.
|