| [1] |
BRINTZINGER H H, FISCHER D, MÜLHAUPT R, et al. Stereospecific olefin polymerization with chiral metallocene catalysts[J]. Angew Chem Int Ed Engl, 2003, 34: 1143-1170.
|
| [2] |
KAMINSKY W. New polymers by metallocene catalysis[J]. Macromol Chem Phys, 1996, 197: 3907-3945.
|
| [3] |
KAMINSKY W. Discovery of methylaluminoxane as cocatalyst for olefin polymerization[J]. Macromolecules, 2012, 45: 3289-3297.
|
| [4] |
刘卫东, 白鸿. 茂金属聚乙烯产品表征、膜性能及应用[J]. 当代化工, 2014, 43(6): 904-906.
|
|
LIU W D, BAI H. Characterization, film property and application of metallocene polyethylene products[J]. Contemp Chem Ind, 2014, 43(6): 904-906.
|
| [5] |
CRAN M J, BIGGER S W. The effect of metallocene-catalyzed polyethylene on the physicomechanical properties of film blends with conventional linear low-density polyethylene[J]. J Plast Film Sheeting, 2006, 22: 121-132.
|
| [6] |
LEE I M, GAUTHIER W J, BALL J M, et al. Electronic effects of Ziegler-Natta polymerization of propylene and ethylene using soluble metallocene catalysts[J]. Organometallics, 1992, 11(6): 2115-2122.
|
| [7] |
PARKER J A, BASSETT D C, OLLEY R H, et al. On high-pressure crystallization and the characterization of linear low-density polyethylenes[J]. Polymer, 1994, 35: 4140-4145.
|
| [8] |
宋倩倩, 黄格省, 周笑洋, 等. 茂金属聚乙烯市场现状与技术进展[J]. 石化技术与应用, 2021, 39(3): 153-158.
|
|
SONG Q Q, HUANG G S, ZHOU X Y, et al. Market status and technological progress of metallocene polyethylene[J]. Petwchem Technol Appl, 2021, 39(3): 153-158.
|
| [9] |
唐伟家. 茂金属聚乙烯开发及市场[J]. 石油化工技术经济, 1999(2): 49-52.
|
|
TANG W J. Development and market of metallocene catalyzed polyethelene[J]. Technol Econ Petrochem, 1999(2): 49-52.
|
| [10] |
王涛. Unipol茂金属聚乙烯工艺技术研究[J]. 化工管理, 2019: 208-209, 212.
|
|
WANG T. Study on the technology of unipol metallocene polyethylene[J]. Chem Eng Manage, 2019: 208-209, 212.
|
| [11] |
TADMOR Z, GOGOS C G. Principles of polymer processing, 2nd edition[M]. New York: John Wiley & Sons, 2013.
|
| [12] |
COURTNEY T. Mechanical behaviors of material[M]. Long Grove: Waveland Press,2005.
|
| [13] |
ZHAO H, ZHANG Q, ALI S, et al. A real-time WAXS and SAXS study of the structural evolution of LLDPE bubble[J]. J Polym Sci Part B: Polym Phys, 2018, 56(20): 1404-1412.
|
| [14] |
刘结平, 何天白. 茂金属支化聚乙烯的结构、形态与熔融行为[J]. 高分子通报, 2002(3): 52-57, 79.
|
|
LIU J P, HE T B. Structure, morphology and melting behaviors of metallocene-catalyzed branched polyethylene[J]. Polym Bull, 2002(3): 52-57, 79.
|
| [15] |
ZHAO H Y, ZHANG Q L, XIA Z J, et al. Elucidation of the relationships of structure-process-property for different ethylene/α-olefin copolymers during film blowing: an in-situ synchrotron radiation X-ray scattering study[J]. Polym Test, 2020, 85: 106439.
|
| [16] |
KUKALEVA N, JOLLANDS M, CSER F, et al. Influence of phase structure on impact toughening of isotactic polypropylene by metallocene-catalyzed linear low-density polyethylene[J]. J Appl Polym Sci, 2000, 76(7): 1011-1018.
|
| [17] |
SUN Y Y, FU L L, WU Z H, et al. Structural evolution of ethylene-octene copolymers upon stretching and unloading[J]. Macromolecules, 2013, 46(3): 971-976.
|
| [18] |
MEN Y. Critical strains determine the tensile deformation mechanism in semicrystalline polymers[J]. Macromolecules, 2020, 53(21): 9155-9157.
|
| [19] |
CHEN J G, ZHU J H, ZHANG W W, et al. What determines yield stress in semicrystalline polymers within lamellar stack dimensions: competition between the yield behaviors of crystalline and glassy amorphous phases[J]. Macromolecules, 2024, 57(4): 1489-501.
|
| [20] |
HISS R, HOBEIKA S, LYNN C, et al. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. a comparative study[J]. Macromolecules, 1999, 32(13): 4390-4403.
|
| [21] |
LIN L, ARGON A S. Structure and plastic-deformation of polyethylene[J]. J Mater Sci, 1994, 29(2): 294-323.
|
| [22] |
BEURROT-BORGARINO S, HUNEAU B, VERRON E, RUBLON P. Strain-induced crystallization of carbon black-filled natural rubber during fatigue measured by in situ synchrotron X-ray diffraction[J]. Int J Fatigue, 2013, 47: 1-7.
|
| [23] |
HERMANS P H. Contributions to the knowledge of the deformation mechanism and the fine structure of hydrate cellulose V The mechanic phenomena of hydrate cellulose (an attempt at the classification of the mechanic phenomena of artificial cellulose filaments in various orientation degrees in a scientific system)[J]. Kolloid-Z, 1939, 86(1): 107-123.
|
| [24] |
HONG K, RASTOGI A, STROBL G. A model treating tensile deformation of semicrystalline polymers: quasi-static stress-strain relationship and viscous stress determined for a sample of polyethylene[J]. Macromolecules, 2004, 37(26): 10165-10173.
|
| [25] |
AGGARWAL S L, TILLEY G P, SWEETING O J. Changes in orientation of crystallites during stretching and relaxation of polyethylene films[J]. J Polym Sci, 2003, 51(156): 551-568.
|
| [26] |
FRASER R D B, MACRAE T P, MILLER A, et al. Digital processing of fiber diffraction patterns[J]. J Appl Crystallogr, 1976, 9(APR1): 81-94.
|
| [27] |
ZHANG Y, XIE Z, ZHONG G J, et al. Effect of cellulose nanocrystals and hot stretching on shish-kebab structures of high-density polyethylene[J]. Ind Eng Chem Res, 2023, 62(37): 15018-15028.
|
| [28] |
JOHN MOALLI. Plastics failure analysis and prevention[M]. New York: William Andrew, 2001.
|
| [29] |
KUBAT J, NILSSON L A, RYCHWALSKI W. Application of a cooperative model to the stress relaxation behaviour of solids[J]. Res Mechanica, 1982, 5(4): 309-316.
|