应用化学 ›› 2025, Vol. 42 ›› Issue (11): 1445-1460.DOI: 10.19894/j.issn.1000-0518.250123
• 综合评述 • 下一篇
收稿日期:2025-03-25
接受日期:2025-09-25
出版日期:2025-11-01
发布日期:2025-12-05
通讯作者:
汪河滨
基金资助:
Peng-Yu CHANG, Cui-Ping CHEN, Kai XU, He-Bin WANG(
)
Received:2025-03-25
Accepted:2025-09-25
Published:2025-11-01
Online:2025-12-05
Contact:
He-Bin WANG
About author:wanghebin329@163.comSupported by:摘要:
金属-多酚网络(Metal-phenolic networks, MPNs)是一类由金属离子与多酚类化合物通过配位作用自组装形成的多功能纳米材料,近年来因其独特的理化性质(如pH响应性、高载药效率、良好的生物相容性)在纳米药物领域备受关注。 本综述系统总结了MPNs的制备以及在药物递送、联合治疗和诊疗一体化中的应用进展,重点总结了不同种类多酚与金属离子组成的性质独特的MPNs在不同领域的应用,为新型纳米药物的设计与优化提供理论参考。
中图分类号:
常鹏宇, 陈翠萍, 徐凯, 汪河滨. 金属-多酚网络的制备及在药物递送与诊疗中应用的研究进展[J]. 应用化学, 2025, 42(11): 1445-1460.
Peng-Yu CHANG, Cui-Ping CHEN, Kai XU, He-Bin WANG. Research Progress on the Preparation of Metal-Polyphenol Networks and Their Applications in Drug Delivery and Diagnosis and Treatment[J]. Chinese Journal of Applied Chemistry, 2025, 42(11): 1445-1460.
图1 MPNs的基本结构、常用金属离子以及3种常见制备方法: 纳米涂层[7]、直接自组装[8]和逐层法[9]的过程示意图
Fig.1 The basic structure of MPNs, common metal ions, and the schematic diagram of three common preparation methods: nanocoating[7], direct self-assembly[8] and layer-by-layer[9]
图4 (A)基于Fe3+和多酚之间的配位制备PPFH的示意图,以及由DFO触发的这些纳米颗粒的动态解组过程; (B)通过尾静脉顺序注射PPFH和DFO来调节TECM的示意图[31]
Fig.4 (A) Schematic diagram of the preparation of PPFH based on the coordination between Fe3+ and polyphenols, and the dynamic disassembly process of these nanoparticles triggered by DFO; (B) Schematic diagram of the modulation of TECM by sequential injection of PPFH and DFO into the tail vein[31]
图5 Cu-Pic/HA纳米颗粒通过全面消耗多胺诱导增强的细胞焦亡铜凋亡进行抗肿瘤过程的示意图[35]
Fig.5 Schematic diagram of the anti-tumor process of Cu-Pic/HA nanoparticles by inducing enhanced pyroptosis and cuproptosis via global depletion of polyamines processes[35]
| Metal ions | Material composition | Mechanism/Anti | Ref. | |
|---|---|---|---|---|
表1 用于抗肿瘤的MPNs
Table 1 Structure types of MPNs that be used to antitumor
| Metal ions | Material composition | Mechanism/Anti | Ref. | |
|---|---|---|---|---|
图6 PH/CuS/TM微针的合成及促进伤口愈合示意图。 (A) TM NPs和PH/CuS/TM微针的制备; (B) PH/CuS/TM微针具有抗菌、清除ROS、免疫调节和促进血管生成等作用,从而实现糖尿病伤口的程序化治疗[34]
Fig.6 Schematic diagram of the synthesis of PH/CuS/TM MNs and the promotion of wound healing. (A) Preparation of TM NPs and PH/CuS/TM MNs; (B) PH/CuS/TM MNs could eradicate bacteria, scavenging ROS and immunomodulation while promoting angiogenesis, enabling programmed treatment of diabetic wounds[34]
| Metal ions | Poly-phenol | Material composition | Mechanism/Anti-bacterial rate | Ref. |
|---|---|---|---|---|
| Fe3+ | TA | DHA@HA-TA-Fe | PTT/CDT/pH respond E.coil/S.aureus:>99% | [ |
| Cu2+ | EGCG | Borax@EGCG-Cu@PVA | Cu2+/CDT/PTT/pH respond E.coil:97.3% S.aureus:83.9% P.aeruginosa:69.1% C.albican:72.2% | [ |
| Ga3+ | TA | TA-Ga | Ga3+/PTT/pH respond E.coil/S.aureus:>99% | [ |
| Ce4+ | TA | HAP-HA@TA-Ce | PTT/CDT/pH respond S.aureus:>99% | [ |
| Fe3+ | EGCG | Au@EGCG-Fe | PTT/PDT/pH respond S.aureus:98.2% E.coil:>99% | [ |
| Fe3+ | TA | Ti3C2@TA-Fe@Ag | Ag+/PTT/pH respond E.coil/S.aureus:>99% | [ |
| Fe3+ | TA | TA-Fe-SA | CDT/PTT/pH respond S.aureus:97.4% E.coil:93.9% | [ |
| Fe3+ | TA | Ce6/TA-Fe | CDT/PDT/pH respond S.aureus:97.8% | [ |
| Fe3+ | TA | TA-Fe-SA | CDT/PTT/pH respond E.coil/S.aureus:>99% | [ |
| Fe3+ | PC | AuAg@PC-Fe | Ag+/PTT/pH respond P.Gingivalis:87.3% F.nucleatum:76.5% | [ |
| Fe3+ | EGCG | BSA@EGCG-Fe | CDT/PTT/pH respond E.coil/S.aureus:>99% | [ |
表2 用于抗菌的MPNs结构
Table 2 Structure types of MPNs that be used to antibacterial
| Metal ions | Poly-phenol | Material composition | Mechanism/Anti-bacterial rate | Ref. |
|---|---|---|---|---|
| Fe3+ | TA | DHA@HA-TA-Fe | PTT/CDT/pH respond E.coil/S.aureus:>99% | [ |
| Cu2+ | EGCG | Borax@EGCG-Cu@PVA | Cu2+/CDT/PTT/pH respond E.coil:97.3% S.aureus:83.9% P.aeruginosa:69.1% C.albican:72.2% | [ |
| Ga3+ | TA | TA-Ga | Ga3+/PTT/pH respond E.coil/S.aureus:>99% | [ |
| Ce4+ | TA | HAP-HA@TA-Ce | PTT/CDT/pH respond S.aureus:>99% | [ |
| Fe3+ | EGCG | Au@EGCG-Fe | PTT/PDT/pH respond S.aureus:98.2% E.coil:>99% | [ |
| Fe3+ | TA | Ti3C2@TA-Fe@Ag | Ag+/PTT/pH respond E.coil/S.aureus:>99% | [ |
| Fe3+ | TA | TA-Fe-SA | CDT/PTT/pH respond S.aureus:97.4% E.coil:93.9% | [ |
| Fe3+ | TA | Ce6/TA-Fe | CDT/PDT/pH respond S.aureus:97.8% | [ |
| Fe3+ | TA | TA-Fe-SA | CDT/PTT/pH respond E.coil/S.aureus:>99% | [ |
| Fe3+ | PC | AuAg@PC-Fe | Ag+/PTT/pH respond P.Gingivalis:87.3% F.nucleatum:76.5% | [ |
| Fe3+ | EGCG | BSA@EGCG-Fe | CDT/PTT/pH respond E.coil/S.aureus:>99% | [ |
图7 (A) GelMA/CMCSMAP-GACo水凝胶的合成和(B)在糖尿病伤口愈合中的潜在应用机制的示意图[61]
Fig.7 Schematic illustration of (A) synthesis of GelMA/CMCSMAP-GACo hydrogel and (B) potential application mechanism in diabetic wound healing[61]
| [1] | GUO Y X, SUN Q, WU F G, et al. Polyphenol-containing nanoparticles: synthesis, properties, and therapeutic delivery[J]. Adv Mater, 2021, 33(22): 2007356. |
| [2] | XIE L S, LI J, WANG L Y, et al. Engineering metal-phenolic networks for enhancing cancer therapy by tumor microenvironment modulation[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2023, 15(3): e1864. |
| [3] | EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157. |
| [4] | EJIMA H, RICHARDSON J J, CARUSO F. Phenolic film engineering for template-mediated microcapsule preparation[J]. Polym J, 2014, 46(8): 452-459. |
| [5] | GUO J L, PING Y, EJIMA H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks[J]. Angew Chem Int Ed, 2014, 53(22): 5546-5551. |
| [6] | ZHANG Z, XIE L S, JU Y, et al. Recent advances in metal-phenolic networks for cancer theranostics[J]. Small, 2021, 17(43): 2100314. |
| [7] | ZHU Y F, WANG N, LING J H, et al. In situ generation of copper(Ⅱ)/diethyldithiocarbamate complex through tannic acid/copper(Ⅱ) network coated hollow mesoporous silica for enhanced cancer chemodynamic therapy[J]. J Colloid Interface Sci, 2024, 660: 637-646. |
| [8] | ZHANG X P, GUO Y X, LIU X Y, et al. A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions[J]. Chem Eng J, 2024, 479: 147084. |
| [9] | XU Y, GUO Y Q, ZHANG C C, et al. Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death[J]. ACS Nano, 2022, 16(1): 984-996. |
| [10] | SU T Y, WU G Q, ZHOU P, et al. “Resource-Conserving” engineered nanoparticles mediate disulfidptosis by overcoming resistance to ferroptosis for antitumor immunotherapy[J]. Chem Eng J, 2024, 500: 157409. |
| [11] | HU Z W, TAN H X, YE Y C, et al. NIR-actuated ferroptosis nanomotor for enhanced tumor penetration and therapy[J]. Adv Mater, 2024, 36(49): 2412227. |
| [12] | HONG T, WAN M H, LV S H, et al. Metal-phenolic coated rod-like silica nanocarriers with pH responsiveness for pesticide delivery[J]. Colloids Surf A, 2023, 662: 130989. |
| [13] | XU M, ZHA H D, HAN R, et al. Cyclodextrin-derived ROS-generating nanomedicine with pH-modulated degradability to enhance tumor ferroptosis therapy and chemotherapy[J]. Small, 2022, 18(20): 2200330. |
| [14] | WU L J, WANG W H, GUO M Q, et al. Inhalable iron redox cycling powered nanoreactor for amplified ferroptosis-apoptosis synergetic therapy of lung cancer[J]. Nano Res, 2024,17(6): 1-17. |
| [15] | CHEN K, GU L, ZHANG Q F, et al. Injectable alginate hydrogel promotes antitumor immunity through glucose oxidase and Fe3+ amplified RSL3-induced ferroptosis[J]. Carbohydr Polym, 2024, 326: 121643. |
| [16] | WANG S M, GUO Q Y, XU R B, et al. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma[J]. J Nanobiotechnol, 2023, 21(1): 383. |
| [17] | JEONG S D, JUNG B K, LEE D Y, et al. Enhanced immunogenic cell death by apoptosis/ferroptosis hybrid pathway potentiates PD-L1 blockade cancer immunotherapy[J]. ACS Biomater Sci Eng, 2022, 8(12): 5188-5198. |
| [18] | TIAN Y H, HE X C, YUAN Y C, et al. TME-responsive nanoplatform with glutathione depletion for enhanced tumor-specific mild photothermal/gene/ferroptosis synergistic therapy[J]. Int J Nanomed, 2024: 9145-9160. |
| [19] | FU Z M, ZHANG Y F, CHEN X L, et al. A versatile nanoplatform based on metal-phenolic networks inhibiting tumor growth and metastasis by combined starvation/chemodynamic/immunotherapy[J]. Adv Funct Mater, 2023, 33(7): 2211869. |
| [20] | GUO L N, ZHONG S H, LIU P, et al. Radicals scavenging MOFs enabling targeting delivery of siRNA for rheumatoid arthritis therapy[J]. Small, 2022, 18(27): 2202604. |
| [21] | FU W, HUANG Z, LI W, et al. Copper-luteolin nanocomplexes for mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease[J]. Bioact Mater, 2025, 46: 118-133. |
| [22] | LIU Y, JING J, JIA F, et al. Tumor microenvironment-responsive theranostic nanoplatform for in situ self-boosting combined phototherapy through intracellular reassembly[J]. ACS Appl Mater Interfaces, 2020, 12(6): 6966-6977. |
| [23] | LIN G, ZHAO L, JIN H, et al. Designing metal-phenolic networks in biomedicine[J]. Appl Mater Today, 2025, 45: 102822. |
| [24] | CHEN Y J, XU W, SHAFIQ M, et al. Injectable nanofiber microspheres modified with metal phenolic networks for effective osteoarthritis treatment[J]. Acta Biomater, 2023, 157: 593-608. |
| [25] | LIU Z J, LI S, XIAO Y, et al. A multi-functional nanoadjuvant coupling manganese with toll-like 9 agonist stimulates potent innate and adaptive anti-tumor immunity[J]. Adv Sci, 2024, 11(41): 2402678. |
| [26] | QI L, HUANG Y, LIU Z, et al. Multidimensionally nano-topologized polycaprolactone fibrous membrane anchored with bimetallic peroxide nanodots for microenvironment-switched treatment on infected diabetic wounds[J]. Adv Fiber Mater, 2024: 1-21. |
| [27] | XIE Y, CHEN S Q, PENG X, et al. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization[J]. Bioact Mater, 2022, 16: 95-106. |
| [28] | LI Y, YAN H Y, LI Y H, et al. Fe-caffeic acid metal-polyphenol networks as acid-sensitive and self-enhanced chemodynamic agents against Staphylococcus aureus[J]. Mater Today Commun, 2025, 42: 111509. |
| [29] | WEI Z W, PENG G G, ZHAO Y Q, et al. Engineering antioxidative cascade metal-phenolic nanozymes for alleviating oxidative stress during extracorporeal blood purification[J]. ACS Nano, 2022, 16(11): 18329-18343. |
| [30] | CHEN X Y, FENG Y, ZHANG D, et al. Orally administered hydrogel containing polyphenol@halloysite clay for probiotic delivery and treatment of inflammatory bowel disease[J]. Nano Today, 2025, 62: 102669. |
| [31] | SUN Q W, LI Y L, SHEN W, et al. Breaking-down tumoral physical barrier by remotely unwrapping metal-polyphenol-packaged hyaluronidase for optimizing photothermal/photodynamic therapy-induced immune response[J]. Adv Mater, 2024, 36(18): 2310673. |
| [32] | WU S, DONG R C, XIE Y H, et al. CO-loaded hemoglobin/EGCG nanoparticles functional coatings for inflammation modulation of vascular implants[J]. Regener Biomater, 2024,12: rbae148. |
| [33] | HUO J J, JIA Q Y, WANG K, et al. Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications[J]. Langmuir, 2023, 39(3): 1238-1249. |
| [34] | GUO Y, ZHANG C K, XIE B Q, et al. Multifunctional microneedle patch based on metal-phenolic network with photothermal antimicrobial, ROS scavenging, immunomodulatory, and angiogenesis for programmed treatment of diabetic wound healing[J]. ACS Appl Mater Interfaces, 2024, 16(26): 33205-33222. |
| [35] | ZHU G Q, XIE Y L, WANG J R, et al. Multifunctional copper-phenolic nanopills achieve comprehensive polyamines depletion to provoke enhanced pyroptosis and cuproptosis for cancer immunotherapy[J]. Adv Mater, 2024, 36(45): 2409066. |
| [36] | ZHANG D, JIANG C W, ZHENG X Y, et al. Normalization of tumor vessels by lenvatinib-based metallo-nanodrugs alleviates hypoxia and enhances calreticulin-mediated immune responses in orthotopic HCC and organoids[J]. Small, 2023, 19(29): 2207786. |
| [37] | MU M, LIANG X Y, CHUAN D, et al. Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy[J]. Carbohydr Polym, 2021, 264: 118000. |
| [38] | SHI H, XIONG C F, ZHANG L J, et al. Light-triggered nitric oxide nanogenerator with high L-arginine loading for synergistic photodynamic/gas/photothermal therapy[J]. Adv Healthcare Mater, 2023, 12(20): 2300012. |
| [39] | GUO Z H, GAO X H, LU J S, et al. Apoptosis and paraptosis induced by disulfiram-loaded Ca2+/Cu2+ dual-ions nano trap for breast cancer treatment[J]. ACS Nano, 2024, 18(9): 6975-6989. |
| [40] | ZENG L J, DING S S, CAO Y H, et al. A MOF-based potent ferroptosis inducer for enhanced radiotherapy of triple negative breast cancer[J]. ACS Nano, 2023, 17(14): 13195-13210. |
| [41] | MENG X Y, WU J Y, HU Z F, et al. Coordinating effect of ferroptosis and in situ disulfiram toxification for enhanced cancer therapy[J]. Chem Eng J, 2024, 484: 149313. |
| [42] | XU Q Q, BAN X H, YANG L J, et al. MRI-visualized PTT/CDT for breast cancer ablation and distant metastasis prevention[J]. Appl Mater Today, 2024, 36: 102059. |
| [43] | CHEN Y Y, JIA D, WANG Q M, et al. Promotion of the anticancer activity of curcumin based on a metal-polyphenol networks delivery system[J]. Int J Pharm, 2021, 602: 120650. |
| [44] | WANG X R, ZHAO L, WANG C X, et al. Potent nanoreactor-mediated ferroptosis-based strategy for the reversal of cancer chemoresistance to Sorafenib[J]. Acta Biomater, 2023, 159: 237-246. |
| [45] | WANG Q, CHEN J, LING J H, et al. Metal-polyphenol network coated photothermal nanocarriers for pH-activated drug delivery[J]. Mater Today Chem, 2024, 35: 101892. |
| [46] | LU S J, TIAN H L, LI B W, et al. An ellagic acid coordinated copper-based nanoplatform for efficiently overcoming cancer chemoresistance by cuproptosis and synergistic inhibition of cancer cell stemness[J]. Small, 2024, 20(17): 2309215. |
| [47] | KONG L, LI J, ZHANG Y X, et al. Biodegradable metal complex-gated organosilica for dually enhanced chemodynamic therapy through GSH depletions and NIR light-triggered photothermal effects[J]. Molecules, 2024, 29(5): 1177. |
| [48] | YU X Y, SHANG T Y, ZHENG G D, et al. Metal-polyphenol-coordinated nanomedicines for Fe(Ⅱ) catalyzed photoacoustic-imaging guided mild hyperthermia-assisted ferroustherapy against breast cancer[J]. Chin Chem Lett, 2022, 33(4): 1895-1900. |
| [49] | YU Q, ZHOU J, SONG J, et al. A cascade nanoreactor of metal-protein-polyphenol capsule for oxygen-mediated synergistic tumor starvation and chemodynamic therapy[J]. Small, 2023, 19(5): 2206592. |
| [50] | YU W H, WANG Q, LIU Z J, et al. Metal-phenolic network crosslinked nanogel with prolonged biofilm retention for dihydroartemisinin/NIR synergistically enhanced chemodynamic therapy[J]. J Colloid Interface Sci, 2025, 678: 841-853. |
| [51] | ZHANG C, ZHAO H, GENG S S, et al. Adhesive, stretchable, and photothermal antibacterial hydrogel dressings for wound healing of infected skin burn at joints[J]. Biomacromolecules, 2024, 25(12): 7750-7766. |
| [52] | XU K, MU C Y, ZHANG C, et al. Antioxidative and antibacterial gallium(Ⅲ)-phenolic coating for enhanced osseointegration of titanium implants via pro-osteogenesis and inhibiting osteoclastogenesis[J]. Biomaterials, 2023, 301: 122268. |
| [53] | CHEN X, HE Q Q, ZHAI Q M, et al. Adaptive nanoparticle-mediated modulation of mitochondrial homeostasis and inflammation to enhance infected bone defect healing[J]. ACS Nano, 2023, 17(22): 22960-22978. |
| [54] | ZHANG C Y, HUANG L J, SUN D W, et al. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity[J]. J Hazard Mater, 2022, 426: 127824. |
| [55] | ZHOU W H, CHEN J, LIAO T, et al. Ag nanoparticles on MXene nanosheets for combined ionic and photothermal therapy of bacterial infections[J]. ACS Appl Nano Mater, 2024, 7(18): 21261-21274. |
| [56] | CHEN J, XIA Y, LAN Q, et al. Alginate based photothermal cryogels boost ferrous-supply for enhanced antibacterial chemodynamic therapy and accelerated wound healing[J]. Int J Biol Macromol, 2023, 232: 123473. |
| [57] | WU J R, WANG Y R, DU J Y, et al. pH-Responsive metal-phenolic network nanoparticles for synergistic chemo-photodynamic antibacterial therapy[J]. ACS Appl Nano Mater, 2024, 7(24): 28408-28418. |
| [58] | ZHAO S L, XIA Y, LAN Q, et al. pH-responsive nanogel for photothemal-enhanced chemodynamic antibacterial therapy[J]. ACS Appl Nano Mater, 2023, 6(10): 8643-8654. |
| [59] | WANG H C, WANG D Y, HUANGFU H M, et al. Branched AuAg nanoparticles coated by metal-phenolic networks for treating bacteria-induced periodontitis via photothermal antibacterial and immunotherapy[J]. Mater Des, 2022, 224: 111401. |
| [60] | XU Y Y, CAI Y J, XIA Y, et al. Photothermal nanoagent for anti-inflammation through macrophage repolarization following antibacterial therapy[J]. Eur Polym J, 2023, 186: 111840. |
| [61] | DENG D Y, LIANG L H, SU K Z, et al. Smart hydrogel dressing for machine learning-enabled visual monitoring and promote diabetic wound healing[J]. Nano Today, 2025, 60: 102559. |
| [62] | GUO S, LI Z H, FENG J, et al. Cycloacceleration of ferroptosis and calcicoptosis for magnetic resonance imaging-guided colorectal cancer therapy[J]. Nano Today, 2022, 47: 101663. |
| [63] | LIU F Q, GUO C, LI X D, et al. A versatile nano-transformer for efficient localization-specific imaging and synergistic therapy of bladder cancer[J]. Nano Today, 2024, 54: 102116. |
| [1] | 刁兆杨, 刘莉, 李晨明, 孙欢利. 纳米药物在急性髓系白血病治疗中应用的研究进展[J]. 应用化学, 2024, 41(9): 1259-1270. |
| [2] | 李桂花, 王洪义, 李铭岫. 甲基丙烯醛氧化酯化制甲基丙烯酸甲酯催化剂的制备与应用[J]. 应用化学, 2005, 22(7): 744-748. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||