应用化学 ›› 2022, Vol. 39 ›› Issue (12): 1891-1902.DOI: 10.19894/j.issn.1000-0518.220099
黄小梅1,2,3(), 邓祥1,2, 邢浪漫1, 陈伟1, 孙莉1, 朱晓玉1
收稿日期:
2022-04-01
接受日期:
2022-08-31
出版日期:
2022-12-01
发布日期:
2022-12-13
通讯作者:
黄小梅
基金资助:
Xiao-Mei HUANG1,2,3(), Xiang DENG1,2, Lang-Man XING1, Wei CHEN1, Li SUN1, Xiao-Yu ZHU1
Received:
2022-04-01
Accepted:
2022-08-31
Published:
2022-12-01
Online:
2022-12-13
Contact:
Xiao-Mei HUANG
About author:
huangxm917@163.comSupported by:
摘要:
采用室温、水溶剂一步共混工艺合成了铜钴双金属有机框架纳米纤维(CuCo-MOF),以CuCo-MOF为前驱体,在空气中高温煅烧,获得均匀负载纳米尺寸氧化铜和氧化钴的碳纳米片(Cu(Ⅱ)Co(Ⅱ)@C)。将Cu(Ⅱ)Co(Ⅱ)@C修饰于玻碳电极,在碱性溶液中直接催化葡萄糖,实现了无酶传感器对葡萄糖的超灵敏检测。由于CuO和CoO均匀牢固地镶嵌在碳基纳米片上,防止了催化剂的团聚,从而极大地增大其催化比表面积,增加了催化活性位点,增强了稳定性,同时因碳纳米片中铜钴双金属的协同作用,使无酶葡萄糖传感器具有优异的导电性、好的催化性能和较高的灵敏度。该无酶传感器对葡萄糖的检测范围为0.03 μmol/L~13.60 mmol/L,检测限为0.01 μmol/L(S/N=3),灵敏度为10.56 mA·L/(cm2·mmol)。此外,该无酶传感器还具有制备方法简单和抗干扰性好等优点。
中图分类号:
黄小梅, 邓祥, 邢浪漫, 陈伟, 孙莉, 朱晓玉. Cu(Ⅱ)Co(Ⅱ)双金属碳纳米片用于无酶葡萄糖传感器[J]. 应用化学, 2022, 39(12): 1891-1902.
Xiao-Mei HUANG, Xiang DENG, Lang-Man XING, Wei CHEN, Li SUN, Xiao-Yu ZHU. Study of Electrochemical Non-enzyme Glucose Sensor Based on Cu(Ⅱ)Co(Ⅱ) Bimetallic Carbon Nanosheets[J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1891-1902.
图1 (A)Cu(Ⅱ)Co(Ⅱ)@C制备过程示意图; (B)无酶葡萄糖传感器的制备过程图
Fig.1 (A) Schematic diagram of preparation of Cu(Ⅱ)Co(Ⅱ)@C; (B) Construction process of non-enzymatic glucose sensor
图2 CuCo-MOF(A)和Cu(Ⅱ)Co(Ⅱ)@C(B)的SEM的表征,B图中红圈里是Cu(Ⅱ)和Co(Ⅱ)的纳米颗粒; (C)和(D) Cu(Ⅱ)Co(Ⅱ)@C的TEM的表征; (E) 在0.10 mol/L NaOH溶液中裸玻碳电极(a)和Cu(Ⅱ)Co(Ⅱ)@/C/GCE电极(b)的循环伏安(CV)曲线
Fig.2 SEM images of CuCo-MOF (A) and Cu(Ⅱ)Co(Ⅱ)@C (B), in the red circle of figure B, there are Cu (Ⅱ) and Co (Ⅱ) nanoparticles; (C) and (D) TEM images of Cu(Ⅱ)Co(Ⅱ)@C; (E) Cyclic voltammetry (CV) curves of bare GCE(a) and Cu(Ⅱ)Co(Ⅱ)@C/GCE(b) in 0.10 mol/L NaOH solution
图3 (A) Cu(Ⅱ)Co(Ⅱ)@C的XRD图谱; (B) Cu(Ⅱ)Co(Ⅱ)@C的XPS的全谱; (C)和(D)分别是Cu2p和Co2p的高分辨率XPS谱图
Fig.3 (A) XRD pattern of Cu(Ⅱ)Co(Ⅱ)@C; (B) XPS spectra of Cu(Ⅱ)Co(Ⅱ)@C full scan; (C) and (D) are high-resolution XPS spectra of Cu2p and Co2p, respectively
图4 (A) 不同纳米材料在含0.50 mmol/L葡萄糖的0.10 mol/L NaOH溶液中的CV曲线;(B) 在搅拌条件下,向5 mL 0.10 mol/LNaOH溶液中连续加入等浓度的葡萄糖溶液时,不同纳米材料电流随时间变化的安培响应。(a) Cu(Ⅱ)@C,(b) CuCo-MOF,(c) Cu(Ⅱ)Co(Ⅱ)@C;(C) 6种不同n(Cu)∶ n(Co) 配比的Cu(Ⅱ)Co(Ⅱ)@C对葡萄糖的催化活性;(D) 不同电势下Cu(Ⅱ)Co(Ⅱ)@C对葡萄糖的催化活性;(E) 含有0.50 mmol/L葡萄糖的0.10 mol/L NaOH溶液中,Cu(Ⅱ)Co(Ⅱ)@C/GCE在10~300 mV/s的不同扫描速率下的CV曲线;(F) Cu的峰电流与扫速平方根的线性关系。所有测试均是在0.10 mol/L NaOH溶液进行
Fig.4 (A) CV curves of different materials in 0.10 mol/L NaOH solution containing 0.50 mmol/L glucose;` (B) The amperometric response of the current with time when an equal concentration of glucose solution is continuously added to 5 mL of 0.10 mol/L NaOH solution under stirring conditions. (a) Cu(Ⅱ)@C, (b) CuCo-MOF, (c) Cu(Ⅱ)Co(Ⅱ)@C; (C) Catalytic activity of Cu(Ⅱ)Co(Ⅱ)@C with six different n(Cu)∶ n(Co) to glucose; (D) Catalytic activity of Cu(Ⅱ)Co(Ⅱ)@C/GCE to glucose at different potentials; (E) CV curves of Cu(Ⅱ)Co(Ⅱ)@C/GCE at different scan rates from 10 to 300 mV/s in 0.10 mol/L NaOH solution containing 0.50 mmol/L glucose; (F) Linear plots of reduction peak and oxidation peak current vs. the square root of the scan rate. Supporting electrolyte is 0.10 mol/L NaOH solution
图5 (A) Cu(Ⅱ)Co(Ⅱ)@C/GCE在含0.50 mmol/L葡萄糖的NaOH溶液中的CV曲线;(B) 反应机理图;(C) Cu(Ⅱ)Co(Ⅱ)@C/GCE在0.45 V下连续加入不同浓度葡萄糖的安培响应曲线;(D、C)的校正曲线图,误差棒是3个测量值的标准差
Fig. 5 (A) CV curves of Cu(Ⅱ)Co(Ⅱ)@C/GCE in 0.10 mol/L NaOH solution without glucose and with 0.50 mmol/L glucose; (B) Reaction mechanism diagram; (C) Amperometric response of Cu(Ⅱ)Co(Ⅱ)@C/GCE at 0.45 V by continuously injecting glucose; (D) The corresponding calibration plot of (C), error bars are the standard deviation of 3 measurements
传感器 | 检测范围 | 灵敏度 | 检测限 | 参考文献 |
---|---|---|---|---|
Sensor | Linear range | Sensitivity/(mA·L·cm-2·mmol-1) | LOD/(μmol·L-1) | Ref. |
Pt-Ni NPs-MWCNTs/GCE | 7.0~16.0 mmol/L | 0.57 | 230 | [ |
Cu@HHNs/GCE | 5 μmol/L~3 mmol/L | 1.59 | 1.97 | [ |
Au@Ni/C/GCE | 0.5~10 mmol/L | 0.023 | 15.7 | [ |
M-BDC MOF/GCE | 0.01~0.8 mmol/L | 0.64 | 6.68 | [ |
NiCo NSs/GNR-GCE | 5 μmol/L~0.8 mmol/L | 0.34 | 0.6 | [ |
Cu(Ⅱ)Co(Ⅱ)@C/GCE | 0.03 μmol/L~13.6 mmol/L | 10.56 | 0.01 | This work |
表1 不同修饰电极对葡萄糖的检测比较
Table 1 Comparison of amperometric responses of the modified electrodes to glucose
传感器 | 检测范围 | 灵敏度 | 检测限 | 参考文献 |
---|---|---|---|---|
Sensor | Linear range | Sensitivity/(mA·L·cm-2·mmol-1) | LOD/(μmol·L-1) | Ref. |
Pt-Ni NPs-MWCNTs/GCE | 7.0~16.0 mmol/L | 0.57 | 230 | [ |
Cu@HHNs/GCE | 5 μmol/L~3 mmol/L | 1.59 | 1.97 | [ |
Au@Ni/C/GCE | 0.5~10 mmol/L | 0.023 | 15.7 | [ |
M-BDC MOF/GCE | 0.01~0.8 mmol/L | 0.64 | 6.68 | [ |
NiCo NSs/GNR-GCE | 5 μmol/L~0.8 mmol/L | 0.34 | 0.6 | [ |
Cu(Ⅱ)Co(Ⅱ)@C/GCE | 0.03 μmol/L~13.6 mmol/L | 10.56 | 0.01 | This work |
图6 (A) Cu(Ⅱ)Co(Ⅱ)@C/GCE在0.10 mol/L NaOH溶液中分别加入0.20 mmol/L果糖、多巴胺、抗坏血酸、尿酸、乳糖、蔗糖、半乳糖和对乙酰氨基酚对葡萄糖检测的影响图; (B) 在含有0.50 mmol/L葡萄糖的0.10 mol/L NaOH溶液中,扫速为 50 mV/s的无酶传感器的稳定性图
Fig 6 (A) Effects of Cu on glucose detection in 0.10 mol/L NaOH solution with 0.20 mmol/L fructose, dopamine (DA), ascorbic acid (AA), uric acid (UA), lactose, sucrose, galactose and paracetamol, respectively; (B) Stability of non-enzymatic glucose biosensors with scanning speed of 50 mV/s in 0.10 mol/L NaOH solution containing 0.50 mmol/L glucose
样品号 | 血清样品 | 葡萄糖加入量 | 实验值 | 医院测定值 | 回收率 | 相对标准偏差 |
---|---|---|---|---|---|---|
Sample No. | c(Original)/(μmol·L-1) | c(Added)/(μmol·L-1) | Found a / (μmol·L-1) | Determined by hospital b /(μmol·L-1) | Recovery/% | RSD% (n=3) |
1 | 50 | 10 | 61.23±3.8 | 60.46±3.2 | 102.1 | 4.2 |
2 | 100 | 20 | 122.1±3.2 | 123.24±2.6 | 101.7 | 3.8 |
3 | 200 | 50 | 245.6±8.1 | 247.1±5.4 | 98.2 | 2.4 |
4 | 400 | 100 | 484.5±18.6 | 479.5±19.3 | 96.3 | 2.9 |
表2 人体血清中葡萄糖的检测
Table 2 Appearance of the biosensor for determination the recovery of glucose
样品号 | 血清样品 | 葡萄糖加入量 | 实验值 | 医院测定值 | 回收率 | 相对标准偏差 |
---|---|---|---|---|---|---|
Sample No. | c(Original)/(μmol·L-1) | c(Added)/(μmol·L-1) | Found a / (μmol·L-1) | Determined by hospital b /(μmol·L-1) | Recovery/% | RSD% (n=3) |
1 | 50 | 10 | 61.23±3.8 | 60.46±3.2 | 102.1 | 4.2 |
2 | 100 | 20 | 122.1±3.2 | 123.24±2.6 | 101.7 | 3.8 |
3 | 200 | 50 | 245.6±8.1 | 247.1±5.4 | 98.2 | 2.4 |
4 | 400 | 100 | 484.5±18.6 | 479.5±19.3 | 96.3 | 2.9 |
1 | ZHU H, LI L, ZHOU W, et al. Advances in non-enzymatic glucose sensors based on metal oxides[J]. J Mater Chem B, 2016, 4: 7333-7349. |
2 | XIAO X, ZHENG S, LI X, et al. Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum[J]. J Mater Chem B, 2017, 5: 5234-5239. |
3 | RADWAN A B, SREEDEVI P, CABIBIHAN J J. Superior non-invasive glucose sensor using bimetallic CuNi nanospecies coated mesoporous carbon[J]. Biosensers, 2021, 11: 463-468. |
4 | 毕宇芳. 2型糖尿病的全生命周期危险因素研究现状[J]. 内科理论与实践, 2021, 16: 373-375. |
BI Y F. Research status of life cycle risk factors for type 2 diabetes mellitus[J]. J Int Med Concepts Practice, 2021, 16: 373-375. | |
5 | YIN S Y, LIU W, YANG J, et al. Synergistically enhanced multienzyme catalytic nanoconjugates for efficient cancer therapy[J]. J Mater Chem B, 2021, 9: 5877-5886. |
6 | CHEN R, XU W J, XIONG C Q, et al. High-salt-tolerance matrix for facile detection of glucose in rat brain microdialysates by maldi mass spectrometry[J]. Anal Chem, 2012, 84: 465-469. |
7 | HU Y H, CHENG H J, ZHAO X Z, et al. Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues[J]. ACS Nano, 2017, 11: 5558-5566. |
8 | 袁春玲, 姚晓条, 徐远金, 等. 双功能碳点用于葡萄糖的比色/比率荧光测定[J]. 高等学校化学学报, 2021, 42(8): 2428-2435. |
YUAN C L, YAO X T, XU Y J, et al. Colorimetry/ratio fluorimetry determination of glucose with bifunctional carbon dots[J].Chem J Chinese Univ, 2021, 42(8): 2428-2435. | |
9 | 车婷华, 谭潇, 晏嘉伟, 等. 铜修饰多孔镍自支撑电极的构建及其葡萄糖氧化性能[J]. 应用化学, 2019, 36(9): 1091-1098. |
CHE T H, TAN X, YAN J W, et al. Synthesis of copper modified porous nickel self-supported electrode and its catalytic oxidation of glucose[J]. Chinese J Appl Chem, 2019, 36(9): 1091-1098. | |
10 | 彭红珍, 张瑜, 郭琳洁, 等. 一步原位还原法制备WS2@Au量子点复合物及其传感应用[J]. 应用化学, 2022, 39(3): 480-488. |
PENG H Z, ZHANG Y, GUO L J, et al. Facile one-step synthesis of WS2@Au quantum dot composite by in situ reduction and its sensing application[J]. Chinese J Appl Chem, 2022, 39(3): 480-488. | |
11 | ZHANG X, LUO J S, TANG P Y, et al. Ultrasensitive binder-free glucose sensors based on the pyrolysis of in situ grown Cu MOF[J]. Sens Actuators B:Chem, 2018, 254: 272-281. |
12 | YU L, XIA B Y, WANG X, et al. General formation of M-MoS3 (M=Co,Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution[J]. Adv Mater, 2016, 28: 92-97. |
13 | CHEN J Y, XU Q, SHU Y, et al. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum[J]. Talanta, 2018, 184: 136-142. |
14 | LUO D, WU L, ZHI J. Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing[J]. ACS Nano, 2009, 3(8): 2121-2128. |
15 | SHU Y, LI B, CHEN J, et al. Facile synthesis of ultrathin nickel cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation[J]. ACS Appl Mater Inter, 2018, 10(3): 2360-2367. |
16 | SHAVANOVA K, BAKAKINA Y, BURKOVA I, et al. Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology[J]. Sensors, 2016, 16(2): 223. |
17 | RAMALINGAM M, KOKULNATHAN T, TSAI P C, et al. Ultrasonication-assisted synthesis of gold nanoparticles decorated ultrathin graphitic carbon nitride nanosheets as a highly efficient electrocatalyst for sensitive analysis of caffeic acid in food samples[J]. App Nanosci, 2021, 254: 1-12. |
18 | KAILASA S, REDDY R, REDDY M, et al. High sensitive polyaniline nanosheets (PANINS)@rGO as non-enzymatic glucose sensor[J]. J Mater Sci:Mater Eletron, 2020, 31(4): 2926-2937. |
19 | YUAN Z, YANG C, GAO H, et al. High response formic acid gas sensor based on MoS2 nanosheets[J]. IEEE T Nanotechnol, 2021, 20: 177-184. |
20 | 王雨桐, 范卫东, 肖振宇, 等. 溶剂控制的铜基金属-有机框架物的合成与荧光性能[J]. 应用化学, 2017, 34(9): 1035-1045. |
WANG Y T, FAN W D, XIAO Z Y, et al. Solvent-dependent synthesis and fluorescent properties of Cu(Ⅱ) metal-organic frameworks[J]. Chinese J Appl Chem, 2017, 34(9): 1035-1045. | |
21 | LIANG Z, CHONG Q, GUO W, et al. Metal-organic frameworks: pristine metal-organic frameworks and their composites for energy storage and conversion[J]. Adv Mater, 2018, 30(37): 1870276. |
22 | 王禹婷, 杨天怡, 章应辉. 卟啉框架材料在光催化领域的应用[J]. 应用化学, 2020, 37(6): 611-619. |
WANG Y T, YANG T Y, ZHANG Y H. Application of porphyrin-based framework materials on photocatalysis[J]. Chinese J Appl Chem, 2020, 37(6): 611-619. | |
23 | 王艺蒙, 张申平, 葛宇, 等. 多孔双金属氧化物/碳复合光催化剂对四环素的高效光催化降解[J]. 物理化学学报, 2020, 36: 1905083, |
WANG Y M, ZHANG S P, GE Y, et al. Highly efficient photocatalytic degradation of tetracycline using a bimetallic oxide/carbon photocatalyst[J]. Acta Phys-Chim Sin, 2020, 36: 1905083. | |
24 | 樊蕾, 江群英, 潘敏, 等. 基于模拟酶-天然酶级联反应的双模式传感平台用于生物标志物的超灵敏检测[J]. 化学学报, 2020, 78(5): 419-426. |
FANG L, JIANG Q Y, PAN M. Dual-mode sensing of biomarkers by mimic enzyme-natural enzyme cascade signal amplification[J]. Acta Chim Sin, 2020, 78(5): 419-426. | |
25 | 万月, 宋美娜, 赵美廷. 二维金属有机框架纳米片的合成及在超电容和电催化领域的应用[J]. 高等学校化学学报, 2021, 42(2): 575-594. |
WAN Y, SHONG M N, ZHAO M Y. Recent progress of two-dimensional metal-organic framework nanosheets for supercapacitor and electrocatalysis applications[J]. Chem J Chinese Univ, 2021, 42(2): 575-594. | |
26 | HOU Q, WU Y, ZHOU S, et al. Inside cover: ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation [J]. Angew Chem Int Ed, 2019, 58(1): 2-7. |
27 | LI R, CHEN T, PAN X. Metal-organic-framework-based materials for antimicrobial applications[J]. ACS Nano, 2021, 15: 3808-3848. |
28 | ABDINEJAD M, MOTLAGH M K, NOROOZIFAR M, et al. Electroreduction of carbon dioxide to formate using highly efficient bimetallic Sn-Pd aerogels[J].Mater Adv, 2022, 3: 1224-1230. |
29 | SADASIVUNI K K. Superior non-invasive glucose sensor using bimetallic CuNi nanospecies coated mesoporous carbon[J]. Biosensors, 2021, 11: 463. |
30 | LONG L, LIU X J, CHEN L L, et al. MOF-derived 3D leaf-like CuCo oxide arrays as an efficient catalyst for highly sensitive glucose detection[J]. Electrochim Acta, 2019, 308: 243-252. |
31 | DING Y L, SUN H D, REN C R, et al. A Nonenzymatic glucose sensor platform based on specific recognition and conductive polymer-decorated CuCo2O4 carbon nanofibers[J]. Materials 2020, 13: 2874. |
32 | CHEN A R, DING Y, YANG Z M, et al. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor[J].Biosens Bioelectron, 2015, 74: 967-973. |
33 | 匡芮. 过渡金属(铜、钴)—有机纳米聚合物的可控制备及催化和传感性质研究[D]. 济南: 山东师范大学, 2017. |
KUANG R. Controllable preparation and catalytic and sensing properties of transition metal (Cu, Co)-organic nanopolymers[D]. Jinan: Shandong Normal University, 2017. | |
34 | ZABIHI M, KHORASHEH F, SHAYEGAN J. Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air[J]. RSC Adv, 2015, 5: 5107-5122. |
35 | SUN K, GAO X F, BAI Y X, et al. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol, 2018, 8: 3936-3947. |
36 | LIU S Y, TENG L, ZHAO Y M, et al. Facile route to synthesize porous hierarchical Co3O4/CuO nanosheets with high porosity and excellent NOx sensing properties at room temperature[J]. Appl Surf Sci, 2018, 450: 91-101. |
37 | WANG L, XING H, GAO S, et al. Porous flower-like NiO@Graphene composites with superior microwave absorption properties[J]. J Mater Chem C, 2017, 5: 2005-2014. |
38 | AMRI A, DUAN X F, YIN C Y, et al. Solar absorptance of copper-cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies[J]. Appl Surf Sci, 2013, 275: 127-135. |
39 | ZHANG Y, HUANG J W, DING Y. Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts[J]. Appl Catal B, 2016, 198: 447-456. |
40 | LIU S Y, TENG L, ZHAO Y M, et al. Facile route to synthesize porous hierarchical Co3O4/CuO nanosheets with high porosity and excellent NOx sensing properties at room temperature[J]. Appl Surf Sci, 2018, 450: 91-101. |
41 | FENG Y, XIANG D, QIU Y R, et al. MOF-derived spinel NiCo2O4 hollow nanocages for the construction of non-enzymatic electrochemical glucose sensor[J]. Electroanalysis, 2020, 32: 571-580. |
42 | ZHOU D, CAO X, WANG Z, et al. Fe3N-Co2N nanowires array: a non-noble-metal bifunctional catalyst electrode for high-performance glucose oxidation and H2O2 reduction toward non-enzymatic sensing applications[J]. Chem-Eur J, 2017, 23(22): 5214-5218. |
43 | CHAKRABORTY P, DHAR S, DEKA N, et al. Non-enzymatic salivary glucose detection using porous CuO nanostructures[J]. Sens Actuators B: Chem, 2020, 302: 127134. |
44 | NAIK K K,SAHOO S,ROUT C S. Facile electrochemical growth of spinel copper cobaltite nanosheets for non-enzymatic glucose sensing and supercapacitor applications[J]. Micropor Mesopor Mat, 2017, 244: 226-234. |
45 | SUN A, ZHENG J, SHENG Q. A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids[J]. Electrochim Acta, 2012, 65: 64-69. |
46 | ARMITA N, MOHAMMAD S S, SAEED S K, et al. Fabrication of a microdialysis-based nonenzymatic microfluidic sensor for regular glucose measurement[J]. Sens Actuators B: Chem, 2021, 333: 129569. |
47 | ZHU Q Z, HU S Y, ZHANG L Q, et al. Reconstructing hydrophobic ZIF-8 crystal into hydrophilic hierarchically-porous nanoflowers as catalyst carrier for nonenzymatic glucose sensing[J]. Sens Actuators B: Chem, 2020, 313: 128031. |
48 | GAO X J, DU X Z, LIU D Y, et al. Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process[J]. Sci Rep-UK, 2020, 10(1): 1365-1372. |
49 | GUMILAR G, KANETI Y V, HENZIE J, et al. General synthesis of hierarchical sheet/plate-like M-BDC (M=Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose sensing[J]. Chem Sci, 2020, 11: 3644-3655. |
50 | ASADIAN E, SHAHROKHIAN S, ZAD A I. Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite[J]. J Electroanal Chem, 2018, 808: 114-123. |
51 | LIAO S H, LU S Y, BAO S J, et al. NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation[J]. Sens Actuators B: Chem, 2016, 905: 72-78. |
[1] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[2] | 田玫, 王晶, 杨丽娟, 张晓雪. 阴阳极协同作用下对硝基苯酚的电催化降解[J]. 应用化学, 2012, 29(11): 1286-1290. |
[3] | 李惠云, 刘院英, 黄东枫, 吕倍红. 介孔分子筛Ti-AlKIT-1的制备、表征与催化性能[J]. 应用化学, 2012, 29(07): 808-813. |
[4] | 姬鄂豫, 陈海玲, 李长鸣. 硫化锰夹杂溶解和微生物存在对不锈钢管发生点蚀[J]. 应用化学, 2012, 29(01): 100-105. |
[5] | 王腾飞, 张光华, 王帆, 魏辉, 孙卫玲. 硫脲基咪唑啉季铵盐的合成及其缓蚀作用[J]. 应用化学, 2010, 27(11): 1291-1295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||