1 |
BOKOBZA L. Natural rubber nanocomposites: a review[J]. Nanomaterials, 2019, 9(1): 12.
|
2 |
LIMPER A. Mixing of rubber compounds[M]//LIMPER A. Mixing of rubber compounds. HANSER. 2012: I-XI.
|
3 |
FENG J, CHAN C M, LI J X. A method to control the dispersion of carbon black in an immiscible polymer blend[J]. Polym Eng Sci, 2003, 43(5): 1058-1063.
|
4 |
WANG M J, WOLFF S, DONNET J B. Filler-elastomer interactions. part III. carbon-black-surface energies and interactions with elastomer analogs[J]. Rubber Chem Technol, 1991, 64(5): 714-736.
|
5 |
WANG M J, WOLFF S, TAN E H. Filler-elastomer interactions. part VIII. The role of the distance between filler aggregates in the dynamic properties of filled vulcanizates[J]. Rubber Chem Technol, 1993, 66(2): 178-195.
|
6 |
WOLFF S, WANG M J. Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement[J]. Rubber Chem Technol, 1992, 65(2): 329-342.
|
7 |
WANG L, LIN Y, ZHANG A. Dispersion of carbon black in high-abrasion furnace black filled nonsulfur modified powdered polychloroprene rubber[J]. J Appl Polym Sci, 2006, 101(1): 192-196.
|
8 |
PARK S J, CHO K S, RYU S K. Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites[J]. Carbon, 2003, 41(7): 1437-1442.
|
9 |
MATHEW T, DATTA R N, DIERKES W K, et al. Plasma polymerization surface modification of carbon black and its effect in elastomers[J]. Macromol Mater Eng, 2011, 296(1): 42-52.
|
10 |
WU Y, WEN S, SHEN J, et al. Improved dynamic properties of natural rubber filled with irradiation-modified carbon black[J]. Radiat Phys Chem, 2015, 111: 91-97.
|
11 |
FANG S, WU S, HUANG J, et al. Notably improved dispersion of carbon black for high-performance natural rubber composites via triazolinedione click chemistry[J]. Ind Eng Chem Res, 2020, 59(48): 21047-21057.
|
12 |
QIU Y, ZHANG A, WANG L. Carbon black-filled styrene butadiene rubber masterbatch based on simple mixing of Latex and carbon black suspension: preparation and mechanical properties[J]. J Macromol Sci B, 2015, 54(12): 1541-1553.
|
13 |
WANG X, CHEN Z, SUN H, et al. Wet mixing with organic solvent for synthesized cis-1,4-polyisoprene-based rubber composites[J]. ACS Omega, 2020, 5(47): 30444-30453.
|
14 |
COTTEN G R. Mixing of carbon black with rubber I. measurement of dispersion rate by changes in mixing torque[J]. Rubber Chem Technol, 1984, 57(1): 118-133.
|
15 |
唐帆, 聂卫云, 路丽珠, 等. 橡胶混炼技术创新及产业化应用[J]. 橡胶科技, 2021, 19(11): 525-533.
|
|
TANG F, NIE W Y, LU L Z, et al. Innovation and industrial application of rubber mixing technology[J]. Rubber Sci Technol, 2021, 19(11): 525-533.
|
16 |
CORAN A Y, DONNET J B. The dispersion of carbon black in rubber part I. rapid method for assessing quality of dispersion[J]. Rubber Chem Technol, 1992, 65(5): 973-997.
|
17 |
CORAN A Y, DONNET J B. The dispersion of carbon black in rubber part II. the kinetics of dispersion in natural rubber[J]. Rubber Chem Technol, 1992, 65(5): 998-1015.
|
18 |
WANG C S, LIU W W. Effect of different parking time on mixing rubber's physical properties in two-stage mixing process[J]. Key Eng Mater, 2013, 561: 380-383.
|
19 |
翟俊学, 李刚臣, 单领弟, 等. 混炼工艺对炭黑/NR胶料性能的影响[J]. 轮胎工业, 2011, 31(3): 169-179.
|
|
ZHAI J X, LI G C, SHAN L D, et al. Effect of mixing technology on the properties of carbon black/NR compound[J]. Tire Ind, 2011, 31(3): 169-179.
|
20 |
CHEN K J, XU S, XU D L. Study on the effect of the temperature rise of rubber compound on tread rubber quality during mixing process[J]. Adv Mater Res, 2013, 750/751/752: 806-810.
|
21 |
王宝金, 周宏斌, 王磊. 应用橡胶加工分析仪研究胶料中炭黑聚集情况[J]. 轮胎工业, 2020, 40(1): 52-55.
|
|
WANG B J, ZHOU H B, WANG L. Study on carbon black aggregation in rubber compound by rubber processing analyzer[J]. Tire Ind, 2020, 40(1): 52-55.
|
22 |
SHI X Y, SUN S H, ZHAO A, et al. Influence of carbon black on the Payne effect of filled natural rubber compounds[J]. Compos Sci Technol, 2021: 203.
|
23 |
PAYNE A R, WHITTAKER R E. Low strain dynamic properties of filled rubbers[J]. Rubber Chem Technol, 1971, 44(2): 440-478.
|
24 |
ZHAO A, SHI X Y, SUN S H, et al. Insights into the Payne effect of carbon black filled styrene-butadiene rubber compounds[J]. Chin J Polym Sci, 2020, 39(1): 81-90.
|
25 |
XU Z, SONG Y, ZHENG Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels[J]. Polymer, 2019: 185.
|
26 |
HENTSCHKE R. The Payne effect revisited[J]. Express Polym Lett, 2017, 11(4): 278-292.
|
27 |
GAN S, WU Z L, XU H, et al. Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the Payne effect[J]. Macromolecules, 2016, 49(4): 1454-1463.
|
28 |
FRÖHLICH J, NIEDERMEIER W, LUGINSLAND H D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[J]. Composites Part A, 2005, 36(4): 449-460.
|
29 |
CLÉMENT F, BOKOBZA L, MONNERIE L. Investigation of the Payne effect and its temperature dependence on silica-filled polydimethylsiloxane networks. part II: test of quantitative models[J]. Rubber Chem Technol, 2005, 78(2): 232-244.
|
30 |
PAYNE A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates part I[J]. J Appl Polym Sci, 1962, 6: 57-63.
|
31 |
VEGVARI P C, HESS W M, CHIRICO V E. Measurement of carbon black dispersion in rubber by surface analysis[J]. Rubber Chem Technol, 1978, 51(4): 817-839.
|
32 |
WANG Z H, LIU J, WU S Z, et al. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers[J]. Phys Chem Chem Phys, 2010, 12(12): 3014-3030.
|
33 |
王昊, 危银涛, 王静. 橡胶材料疲劳寿命影响因素及研究方法综述[J]. 橡胶工业, 2020, 67(10): 723-735.
|
|
WANG H, WEI Y T, WANG J. Influencing factors and research methods of rubber material fatigue life[J]. China Rubber Ind, 2020, 67(10): 723-735.
|