应用化学 ›› 2022, Vol. 39 ›› Issue (9): 1464-1474.DOI: 10.19894/j.issn.1000-0518.220165

• 研究论文 • 上一篇    

液态金属原位引发制备半互穿网络水凝胶构建低污染电化学传感界面

李德1, 王楠2, 杨华伟3, 马姣1()   

  1. 1.太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024
    2.威高集团有限公司山东省医用植入器械技术重点实验室,威海 264210
    3.中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室,长春 130022
  • 收稿日期:2022-05-04 接受日期:2022-07-21 出版日期:2022-09-01 发布日期:2022-09-08
  • 通讯作者: 马姣
  • 基金资助:
    国家自然科学基金(51903185)

Semi⁃interpenetrated Network Hydrogels Prepared by in⁃situ Initiation of Liquid Metal to Construct a Low Fouling Electrochemical Sensing Interface

De LI1, Nan WANG2, Hua-Wei YANG3, Jiao MA1()   

  1. 1.Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China
    2.Key Laboratory for Medical Implantable Devices of Shandong Province,WEGO Holding Company Limited,Weihai 264210,China
    3.State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
  • Received:2022-05-04 Accepted:2022-07-21 Published:2022-09-01 Online:2022-09-08
  • Contact: Jiao MA
  • About author:majiao@tyut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51903185)

摘要:

复杂组分在传感界面的非特异性吸附会严重影响传感器的灵敏度与准确度。虽然构建致密的亲水性抗污涂层能够抑制表面非特异性吸附,但是其绝缘性又会显著增大传感界面阻抗,严重削弱响应电流。因此,如何兼顾传感界面抗污性与导电性,构建灵敏的传感基底是电化学免疫传感器目前急需解决的关键问题。为此,利用镓化铟液态金属(Liquid Metal, LM)原位引发乙烯基吡咯烷酮(N-vinylprrolidone, NVP)聚合,同时利用壳聚糖(Chitosan, CS)与聚乙烯基吡咯烷酮(poly(N-vinylprrolidone), pNVP)之间强烈的氢键结合作用,再分步交联成功获得一种半互穿网络水凝胶传感界面,并以此构建电化学免疫传感器。研究表明,所构建的传感器能够对胃动素实现灵敏检测,线性范围为10 pg/mL~10 μg/mL,检测限为6.91 pg/mL(S/N=3),并且在5%的血清样品中检测结果不受影响。此外,所构建的免疫传感器也显示出优异的重复性、稳定性和选择性。以上结果成功证明了基于液态金属纳米复合凝胶作为电化学传感基底的可行性,也为其它电化学免疫传感器的构建提供重要的借鉴意义。

关键词: 液态金属, 导电凝胶, 抗污, 电化学免疫传感

Abstract:

Any materials present in complex samples that bind the sensing interface non-specifically will greatly decrease the sensitivity and accuracy of the electrochemical sensor. Traditional antifouling coatings could hinder the electron transfer, resulting in a double-edged strategy. Here, we create a semi-interpenetrated nanocomposite hydrogel, consisting of a liquid metal (LM) conductive core, an antifouling poly(vinyl pyrrolidone) (pNVP) network covalently grafting from it and homogeneously distributed chitosan around the pNVP chain, with excellent antifouling property while maintaining high conductivity. Remarkably, we further propose a polymerization-crosslinking separation strategy, thus facilitating the hydrogel sensing matrix with good processibility, accompanying repeatability and excellent stability. Finally, a label-free electrochemical immunosensor based on the proposed hydrogel-based sensing interface is successfully fabricated, and it possesses excellent repeatability, storage stability, selectivity, a wide linear range from 10 pg/mL~10 μg/mL, and an ultralow detection limit of 6.91 pg/mL for the detection of motilin. Moreover, no change is observed even in the presence of 5% serum. The above results successfully proved the feasibility of using liquid metal nanocomposite hydrogel as electrochemical sensing base, and also provides important reference for the construction of other electrochemical immunosensor.

Key words: Liquid metal, Conductive hydrogel, Antifouling, Electrochemical immunosensor

中图分类号: