[1] WEZEL A L. Growth of cell-strains and primary cells on microcarriers in homogeneous culture[J]. Nature, 1967, 216: 64-65. [2] LI B, WANG X, WANG Y, et al. Past, present, and future of microcarrier-based tissue engineering[J]. J Orthop Translat, 2015, 3(2): 51-57. [3] LIU C C, WU S C, WU S R, et al. Enhancing enterovirus A71 vaccine production yield by microcarrier profusion bioreactor culture[J]. Vaccine, 2018, 36(22): 3134-3139. [4] GEDIMINAS S, AGNÉ D, VILTÉ M, et al, PEEK polymer's properties and its use in prosthodontics. a review[J]. Stomatologija, 2018, 20(2): 54-58. [5] JI Q M, JIAO Z X, ZHANG P B, et al. Biomimetic polyetheretherketone microcarriers with specific surface topography and self-secreted extracellular matrix for large-scale cell expansion[J]. Regen Biomater, 2020, 7(1): 109-118. [6] 尹玉姬, 姚康德, 刘文广, 等. 组织工程相关壳聚糖-明胶基生物材料[J]. 应用化学, 2004, 21(3): 217-222. YIN Y J, YAO K D, LIU W G, et al. Chitosan-gelatin network based biomaterials in tissue engineering[J]. Chinese J Appl Chem, 2004, 21(3): 217-222. [7] 周小华, 骆辉, 周桢. 壳聚糖-明胶共聚物的酶促合成及抑菌性质[J]. 应用化学, 2008, 25(3): 84-89. ZHOU X H, LUO H, ZHOU Z, et al. Synthesis of chitosan-gelatin copolymer in the presence of MT gase and its bacteriostasis properities[J]. Chinese J Appl Chem, 2008, 25(3): 84-89. [8] 赵剑英, 李玉邯, 郭海全, 等. 生物芯片表面氨基密度检测及稳定性研究[J]. 分析化学, 2006, 34(9): 1235-1238. ZHAO J Y, LI Y H, GUO H Q, et al.Relative surface density and stability of the amines on the bio-chip[J]. Chinese J Anal Chem , 2006, 34(9): 1235-1238. [9] 杨明太, 唐慧. 能量色散X射线荧光光谱仪现状及其发展趋势[J]. 核电子学与探测技术, 2011, 12: 1307-1311. YANG M T, TANG H. The actualities and trend of energy dispersive X-Ray fluorescence spectrometry[J]. Nucl Electron Detect Technol, 2011, 12: 1307-1311. [10] ECHAVE M C, BURGO L S, PEDRAZ J L, et al. Gelatin as biomaterial for tissue engineering[J]. Curr Pharm Des, 2017, 23(24): 3567-3584. [11] HUANG L, ABDALLA M E, XIAO L, et al. Biopolymer-based microcarriers for three-dimensional cell culture and engineered tissue formation[J]. Int J Mol Sci, 2020, 21(5): 1895-1916. [12] LERMAN M J, LEMBONG J, MURAMOTO S, et al. The evolution of polystyrene as a cell culture material[J]. Tissue Eng Part B, 2018, 24(5): 359-372. [13] NAGASE K, YAMATO M, KANAZAWA H, et al. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications[J]. Biomaterials, 2017, 153: 7-48. [14] BODIOU V, MOUTSATSOU P, POST M J. Microcarriers for upscaling cultured meat production[J]. Front Nutr, 2020, 7: 10-25. [15] SART S, AGATHOS S N, LI Y, et al. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers[J]. Biotechnol Prog, 2013, 29: 1354-1366. [16] TAN K Y, REUVENY S, WENG OH S K, et al. Recent advances in serum-free microcarrier expansion of mesenchymal stromal cells: parameters to be optimized[J]. Biochem Biophys Res Commun, 2016, 473(3): 769-773. [17] LAM T L , CHEN K L , TING Q P , et al. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures[J]. Biochem Biophys Res Commun, 2016, 473(3): 764-768. |