[1] Bejarano J,Navarro-Marquez M,Morales-Zavala F,et al. Nanoparticles for Diagnosis and Therapy of Atherosclerosis and Myocardial Infarction: Evolution Toward Prospective Theranostic Approaches[J]. Theranostics,2018,8(17):4710-4732. [2] Ortgies D H,García-Villalón Á L,Granado M,et al. Infrared Fluorescence Imaging of Infarcted Hearts with Ag2S Nanodots[J]. Nano Res,2019,12(4):749-757. [3] Vernekar AA,Sinha D,Srivastava S,et al. An Antioxidant Nanozyme that Uncovers the Cytoprotective Potential of Vanadia Nanowires[J]. Nat Commun,2014,5:5301. [4] Ge C,Fang G,Shen X,et al. Facet Energy Versus Enzyme-Like Activities:The Unexpected Protection of Palladium Nanocrystals Against Oxidative Damage[J]. ACS Nano,2016,10(11):10436-10445. [5] Huang Y,Liu Z,Liu C,et al. Self-assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System[J]. Angew Chem Int Ed,2016,55(23):6646-6650. [6] Singh N,Savanur M A,Srivastava S,et al. A Manganese Oxide Nanozyme Prevents the Oxidative Damage of Biomolecules Without Affecting the Endogenous Antioxidant System[J]. Nanoscale,2019,11(9):3855-3863. [7] Hou C,Luo Q,Liu J,et al. Construction of GPx Active Centers on Natural Protein Nanodisk/Nanotube:A New Way to Develop Artificial Nanoenzyme[J]. ACS Nano,2012,6(10):8692-8701. [8] Asati A,Santra S,Kaittanis C,et al. Oxidase-like Activity of Polymer-coated Cerium Oxide Nanoparticles[J]. Angew Chem Int Ed Engl,2009,48(13):2308-2312. [9] Korsvik C,Patil S,Seal S,et al. Superoxide Dismutase Mimetic Properties Exhibited by Vacancy Engineered Ceria Nanoparticles[J]. Chem Commun,2007,10:1056-1058. [10] Wu J,Wang X,Wang Q,et al. Nanomaterials with Enzyme-Like Characteristics(Nanozymes):Next-Generation Artificial Enzymes(II)[J]. Chem Soc Rev,2019,48(4):1004-1076. [11] Adini A R,Redlich M,Tenne R. Medical Applications of Inorganic Fullerene-Like Nanoparticles[J]. J Mater Chem,2011,21(39):15121-15131. [12] Liu T,Shi S,Liang C,et al. Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy[J]. ACS Nano,2015,9(1):950-960. [13] Pardo M,Shuster-Meiseles T,Levin-Zaidman S,et al. Low Cytotoxicity of Inorganic Nanotubes and Fullerene-like Nanostructures in Human Bronchial Epithelial Cells:Relation to Inflammatory Gene Induction and Antioxidant Response[J]. Environ Sci Technol,2014,48(6):3457-3466. [14] Hao J,Song G,Liu T,et al. In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS2(M=Mo, W, Ti) Nanosheets[J]. Adv Sci(Weinh),2017,4(1):1600160. [15] Chen T,Zou H,Wu X,et al. Nanozymatic Antioxidant System Based on MoS2 Nanosheets[J]. ACS Appl Mater Interfaces,2018,10(15):12453-12462. [16] Fan K,Xi J,Fan L,et al. In Vivo Guiding Nitrogen-Doped Carbon Nanozyme for Tumor Catalytic Therapy[J]. Nat Commun,2018,9(1):1440. [17] Sun H,Zhao A,Gao N,et al. Deciphering a Nanocarbon-Based Artificial Peroxidase: Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots[J]. Angew Chem Int Ed,2015,54(24):7176-7180. [18] Hu M,Korschelt K,Daniel P,et al. Fibrous Nanozyme Dressings with Catalase-Like Activity for H2O2 Reduction to Promote Wound Healing[J]. ACS Appl Mater Interfaces,2017,9(43):38024-38031. [19] Zeng C,Feng Y,Wang W,et al. The Size-Dependent Apoptotic Effect of Titanium Dioxide Nanoparticles on Endothelial Cells by the Intracellular Pathway[J]. Environ Toxicol,2018,33(12):1221-1228. [20] Chang K,Chen W. L-Cysteine-assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano,2011,5(6):4720-4728. [21] Wang Y,Ni Y. Molybdenum Disulfide Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection[J]. Anal Chem,2014,86(15):7463-7470. [22] Huang H,Du C,Shi H,et al. Water-Soluble Monolayer Molybdenum Disulfide Quantum Dots with Upconversion Fluorescence[J]. Part Part Syst Charact,2015,32(1):72-79. [23] Carillon J,Rouanet J,Cristol J,et al. Superoxide Dismutase Administration, A Potential Therapy Against Oxidative Stress Related Diseases:Several Routes of Supplementation and Proposal of an Original Mechanism of Action[J]. Pharm Res,2013,30(11):2718-2728. [24] Sun H,Gao N,Dong K,et al. Graphene Quantum Dots-Band-Aids Used for Wound Disinfection[J]. ACS Nano,2014,8(6):6202-6210. [25] Slesak I,Slesak H,Zimak-Piekarczyk P,et al. Enzymatic Antioxidant Systems in Early Anaerobes:Theoretical Considerations[J]. Astrobiology,2016,16(5):348-358. [26] Wu M,Lin Z,Wolfbeis O S. Determination of the Activity of Catalase Using a Europium(III)-Tetracycline-derived Fluorescent Substrate[J]. Anal Biochem,2003,320(1):129-135. [27] Jiang D,Ni D,Rosenkrans Z T,et al. Nanozyme: New Horizons for Responsive Biomedical Applications[J]. Chem Soc Rev,2019,48(14):3683-3704. [28] Wei H,Wang E. Nanomaterials with Enzyme-like Characteristics(Nanozymes):Next-Generation Artificial Enzymes[J]. Chem Soc Rev,2013,42(14):6060-6093. [29] Huang X,Zhuang J,Teng X,et al. The Promotion of Human Malignant Melanoma Growth by Mesoporous Silica Nanoparticles Through Decreased Reactive Oxygen Species[J]. Biomaterials,2010,31(24):6142-6153. [30] Kuo J S,Jan M,Lin Y. Interactions Between U-937 Human Macrophages and Poly(propyleneimine) Dendrimers[J]. J Control Release,2007,120(1-2):51-59. [31] Chen W,Hsieh S,Chiu C,et al. Molecular Identification for Epigallocatechin-3-gallate-Mediated Antioxidant Intervention on the H2O2-Induced Oxidative Stress in H9c2 Rat Cardiomyoblasts[J]. J Biomed Sci,2014,21(1):56. [32] Hsu H,Chen C,Chiang C,et al. Eicosapentaenoic Acid Attenuated Oxidative Stress-Induced Cardiomyoblast Apoptosis by Activating Adaptive Autophagy[J]. Eur J Nutr,2014,53(2):541-547. [33] Qian J,Jiang F,Wang B,et al. Ophiopogonin D prevents H2O2-induced Injury in Primary Human Umbilical Vein Endothelial Cells[J]. J Ethnopharmacol,2010,128(2):438-445. [34] Leber B,Geng F,Kale J,et al. Drugs Targeting Bcl-2 Family Members as an Emerging Strategy in Cancer[J]. Expert Rev Mol Med,2010,12. [35] Lin H,Chen J,Huang C,et al. Apoptotic Effect of 3,4-Dihydroxybenzoic Acid on Human Gastric Carcinoma Cells Involving JNK/p38 MAPK Signaling Activation[J]. Int J Cancer,2007,120(11):2306-2316. [36] Shihab F S,Andoh T F,Tanner A M,et al. Expression of Apoptosis Regulatory Genes in Chronic Cyclosporine Nephrotoxicity Favors Apoptosis[J]. Kidney Int,1999,56(6):2147-2159. |