应用化学 ›› 2020, Vol. 37 ›› Issue (2): 211-217.DOI: 10.11944/j.issn.1000-0518.2020.02.190214

• 研究论文 • 上一篇    下一篇

基于微流控双水相液滴流酶促反应的尿素检测

董钰漫,孟世昕,瞿凤梅,孙鹤家,唐启明,王垚磊,孟涛()   

  1. 西南交通大学生命科学与工程学院 成都 610031
  • 收稿日期:2019-08-01 接受日期:2019-11-14 出版日期:2020-02-01 发布日期:2020-02-06
  • 通讯作者: 孟涛
  • 基金资助:
    国家自然科学基金(21776230)资助项目

Microfluidic Droplets Flow for Urea Detection Based on Enzymatic Reaction in Aqueous Two-Phase System

DONG Yuman,MENG Shixin,QU Fengmei,SUN Hejia,TANG Qiming,WANG Yaolei,MENG Tao()   

  1. School of Life Science and Engineering,South West Jiaotong University,Chengdu 610031,China
  • Received:2019-08-01 Accepted:2019-11-14 Published:2020-02-01 Online:2020-02-06
  • Contact: MENG Tao
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.21776230)

摘要:

以简单、快速的微流控酶促反应方法实现了尿素浓度的可视化检测。 在微流控双水相液滴流动中,利用脲酶水解尿素生成碳酸铵使液滴内的中性红指示剂变色,并对液滴颜色强度进行分析来确定待测样品中尿素的浓度,检测范围可达到0~50 mg/mL。 双水相体系克服了传统油水分析检测平台生物相容性低的缺陷。 液滴流以较少的试剂消耗、极大的比表面积、微米级的扩散距离大大提高了反应速率,导致了较快的分析检测速度,将检测时间缩短为20 s左右。 为应用化学领域的尿素快速分析检测提供借鉴和参考。

关键词: 尿素检测, 微流控, 双水相, 液滴流, 酶促反应

Abstract:

A simple and rapid microfluidic enzymatic reaction method was used to visualize the urea concentration. In the aqueous two-phase system (ATPS), ammonium carbonate produced by the enzymatic reaction discolors the neutral red indicator in droplets, and the color intensity of droplets is analyzed to determine the concentration of urea in the sample to be tested. The detection range can reach 0~50 mg/mL. The microfluidic ATPS droplet flow overcomes the challenge of low biocompatibility of traditional detection platforms based on oil-water droplet. Less consumption, extremely large specific surface area and micro-scale diffusion distance of droplet flow result in the high enzymatic reaction rate. The reaction rate is many times faster than that of traditional beaker method. The detection time is reduced to 20 s. The study aims to provide new ideas and reference for the rapid urea detection in the field of applied chemistry.

Key words: urea detection, microfluidics, aqueous two-phase system, droplet flow, enzymatic reaction