有机催化异氰基乙酸甲酯与芳香醛亚胺的不对称Mannich反应
王黎明, 穆宏文, 卢栋泽, 李雪涛, 李彤, 金瑛*
吉林医药学院药学院 吉林 吉林132013
通讯联系人:金瑛,教授; Tel:0432-64560318; Fax:0432-64560316; E-mail:jinying2288@163.com; 研究方向:有机合成及不对称催化
摘要

将金鸡纳生物碱衍生物用于有机催化异氰基乙酸甲酯与芳香醛亚胺的不对称Mannich反应。 考察溶剂、温度及催化剂用量对反应催化性能的影响。 结果表明,最佳催化条件为摩尔分数10%催化剂1b,甲苯为溶剂,4A型分子筛,室温反应。 产物产率为55%~80%,对映选择性最高达82% ee(对映体过量值)和非对映选择性( dr)达到>99:1。

关键词: 金鸡纳生物碱衍生物; 有机催化; 不对称Mannich反应; 异氰基乙酸甲酯
中图分类号:O621.3 文献标志码:A 文章编号:1000-0518(2019)07-0758-06
Organocatalyzed Asymmetric Mannich Reaction of Isocyanoacetate with Tosylimines
WANG Liming, MU Hongwen, LU Dongze, LI Xuetao, LI Tong, JIN Ying
Department of Pharmacy,Jilin Medical University,Jilin,Jilin 132013,China
Corresponding author:JIN Ying, professor; Tel:0432-64560318; Fax:0432-64560316; E-mail:jinying2288@163.com; Research interests:organic synthesis and asymmetric catalysis
Abstract

Cinchona alkaloid derivatives as organocatalysts were applied in asymmetric Mannich reaction of isocyanoacetate with N-tosyl aryl aldimines. The effect of solvent, temperature and catalyst loading ammount were investigated. The optimized conditions were confirmed to include toluene as the solvent with a molar fraction 10% loading of catalyst 1b at room temperature. The desired products were obtained in 55%~80% yield with high diastereo- and enantioselectivities( trans/cis up to >99:1 and 82% ee).

Keyword: cinchona alkaloid derivatives; organocatalysis; asymmetric mannich reaction; isocyanoacetate

2-咪唑啉结构存在于许多重要的活性天然产物中,并且广泛应用于生物活性二氨基酸衍生物的制备[1,2,3],因此,对于2-咪唑啉衍生物的制备具有重要意义。 异氰基羧酸酯和亚胺不对称Mannich反应是获得2-咪唑啉化合物的重要方法。 1996年,Hayashi等[4]报道了金催化的异氰基乙酸酯与 N-Ts芳香酰亚胺的不对称Mannich反应,以>99:10dr的非对映选择性得到了 cis-构型的主产物。 此后,对于此类反应的研究获得到了很大的发展,但是,大多是基于金、铷、钯及铜等金属催化的反应[5,6,7,8,9,10]。 2010年,Lu等[11]首次报道了有机催化的异氰基乙酸甲酯与 N-Ts芳香醛亚胺的不对称Mannich反应,以最高70% ee(对映体过量值)的对映选择性得到 trans-构型的2-咪唑啉。 目前,有机催化该类反应获得光学活性2-咪唑啉的报道很少,2012年,Nakamura[12]报道了手性硫脲衍生物有机催化异氰基乙酸甲磺酰酯与 N-2-吡啶磺酰基亚胺的不对称Mannich反应,得到了最高达96% ee对映选择性。 本文将多种金鸡纳生物碱衍生物1a~1g(图1)作为有机催化剂用于异氰基乙酸甲酯和 N-Ts芳香醛亚胺的不对称Mannich反应,得到了最高达82% ee的对映选择性,并拓宽了反应底物范围。

图1 催化剂1a-1g的结构Fig.1 The structure of catalysts 1a-1g

1 实验部分
1.1 试剂和仪器

Bruker Avance-500型核磁共振谱仪(NMR,德国Bruker公司);FT-ICR型高分辨质谱仪(HRMS,德国Bruker公司);LC-20A型高效液相色谱仪(HPLC,日本岛津公司),Chiralcel OD-H型手性色谱柱(日本大赛璐公司);VERTEX70型傅里叶变换红外光谱仪(FTIR,德国Bruker公司)。

奎宁购自Acros试剂;奎尼丁购自Fluka试剂,4A型分子筛(科密欧)购自Aladdin试剂;其它试剂均为市售分析纯产品。 芳香醛亚胺根据文献[13]方法合成,催化剂1a-1g根据文献[14]方法合成。

1.2 不对称Michael加成反应

于5 mL圆底烧瓶中依次加入异氰基乙酸甲酯(0.22 mmol)、催化剂(0.02 mmol)、亚胺(0.20 mmol)、分子筛(200 mg)和甲苯(0.5 mL),室温搅拌反应24 h,薄层色谱(TLC)监测。 反应结束后,经硅胶柱层析分离, V(正己烷): V(乙酸乙酯)=12:1洗脱,得到油状产品3a-3k。

(4 S,5 R)-4-(甲氧羰基)-5-苯基- N-对甲基苯磺酰基-2-咪唑啉(3a)1H NMR(500 MHz,CDCl3), δ:7.65(d, J=2.0 Hz,1H),7.47(d, J=8.5 Hz,2H),7.267.16(m,7H),5.08(d, J=7.5 Hz,1H),4.67(dd, J=2.0, 7.5 Hz,1H),3.70(s,3H),2.41(s,3H);HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=95:5,0.8 mL/min,254 nm), tR:35.7 min(minor),40.2 min(major);[ α ]D20=-32.5( c 1.06,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(2-氟)苯基- N-对甲基苯磺酰基-2-咪唑啉(3b) ATR-FTIR(KBr), σ/cm-1:3430,1742,1620,1444,1360,1271,1173,1024,879,756,607,549;1H NMR(500 MHz,CDCl3), δ:7.62(d, J=2.0 Hz,1H),7.52(d, J=8.5 Hz,2H),7.287.17(m,4H),7.08(t, J=6.5 Hz,1H),6.90(t, J=9.0 Hz,1H),5.28(d, J=7.5 Hz,1H),4.72(dd, J=2.0,7.5 Hz,1H),3.69(s,3H),2.41(s,3H);13C NMR(125 MHz,CDCl3), δ:169.2,149.8,144.9,134.1,130.5(d, J=33.0 Hz),129.8(×2),129.4(d, J=12.5 Hz),129.0,128.2,127.4(×2),124.5(d, J=13.5 Hz),115.8(d, J=83.0 Hz),78.6,58.7,52.9,21.6;HRMS(ESI+): m/zC18H18FN2O4S+[M+H]+计算值:377.09658,实测值:377.09671;HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,0.6 mL/min,254 nm), tR:23.2(major) min,25.5 min(minor);[ α ]D20=-18.7( c 0.73,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(2-三氟甲基)苯基- N-对甲基苯磺酰基-2-咪唑啉(3c) ATR-FTIR(KBr), σ/cm-1:3425,1745,1618,1450,1363,1313,1299,1158,1120,879,672,617,552;1H NMR(500 MHz,CDCl3), δ:7.76(s,1H),7.67(d, J=8.5 Hz,2H),7.577.50(m,2H),7.487.40(m,2H),7.33(d, J=8.5 Hz,1H),5.40(d, J=5.5 Hz,1H),4.51(d, J=5.0 Hz,1H),3.59(s,3H),2.45(s,3H);13C NMR(125 MHz,CDCl3), δ:168.9,151.0,145.3,133.4,132.9,130.0(×2),129.7,129.0(m),128.4,127.7(×2),126.9,126.4,125.8(d, J=17.5 Hz),80.6,58.9,52.7,21.6;HRMS(ESI+): m/z C19H18F3N2O4S+[M+H]+计算值:427.09339,实测值:427.09385;HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,0.8 mL/min,254 nm), tR:13.8 min(major),16.1 min(minor);[ α ]D20=-23.2( c 0.85,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(3-氯)苯基- N-对甲基苯磺酰基-2-咪唑啉(3d) ATR-FTIR(KBr), σ/cm-1:3419,1745,1687,1447,1360,1313,1275,1160,880,660,566,547;1H NMR(500 MHz,CDCl3), δ:7.65(d, J=2.5 Hz,1H),7.47(d, J=8.5 Hz,2H),7.257.17(m,3H),7.147.09(m,2H),6.99(d, J=7.5 Hz,1H),6.84(s,1H),5.08(d, J=7.5 Hz,1H),4.62(dd, J=2.5,7.5 Hz,1H),3.72(s,3H),2.40(s,3H);13C NMR(125 MHz,CDCl3), δ:169.5,150.0,145.2,139.9,134.3,130.2,129.9(×2),128.7,128.2,127.3(×2),126.9,125.4,79.8,63.2,53.0,21.6;HRMS(ESI+): m/z C18H18ClN2O4S+ [M+H]+计算值:393.06703,实测值:393.06703;HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=90:10,0.6 mL/min,254 nm), tR:49.8 min(minor),53.8 min(major);[ α ]D20=-28.3( c 1.05,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(3-甲基)苯基- N-对甲基苯磺酰基-2-咪唑啉(3e) ATR-FTIR(KBr), σ/cm-1:3423,1740,1687,1441,1360,1305,1157,880,804,663,547;1H NMR(500 MHz,CDCl3), δ:7.65(d, J=2.0 Hz,1H),7.46(d, J=7.0 Hz,2H),7.19(d, J=8.0 Hz,2H),7.147.10(m,1H),7.04(d, J=7.5 Hz,1H),6.97(d, J=7.5 Hz,1H),6.84(s,1H),5.07(d, J=7.5 Hz,1H),4.65(dd, J=2.0,7.0 Hz,1H),3.70(s,3H),2.38(s,3H),2.20(s,3H);13C NMR(125 MHz,CDCl3), δ:169.8,150.1,144.6,138.6,137.9,134.7,129.7(×2),129.3,128.7,127.4,127.3(×2),124.3,79.9,63.8,52.9,21.6,21.2;HRMS(ESI+): m/z C19H21N2O4S+[M+H]+计算值:373.12165,实测值:373.12182;HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,1.0 mL/min,254 nm), tR:10.3 min(minor),11.3 min(major);[ α ]D20=-31.8( c 0.92,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(4-氟)苯基- N-对甲基苯磺酰基-2-咪唑啉(3f)1H NMR(500 MHz,CDCl3), δ:7.68(s,1H),7.47(d, J=8.5 Hz,2H),7.21(d, J=8.0 Hz,2H),7.167.10(m,2H),6.92(t, J=8.5 Hz,2H),5.08(d, J=7.5 Hz,1H),4.64(d, J=7.5 Hz,1H),3.71(s,3H),2.41(s,3H);HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,1.0 mL/min,254 nm), tR:26.0 min(major),29.1 min(minor);[ α ]D20=-29.5( c 0.63,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(4-氯)苯基- N-对甲基苯磺酰基-2-咪唑啉(3g)1H NMR(500 MHz,CDCl3), δ:7.64(s,1H),7.46(d, J=7.0 Hz,2H),7.247.16(m,4H),7.08(d, J=8.0 Hz,2H),5.03(d, J=6.5 Hz,1H),4.61(d, J=6.5 Hz,1H),3.69(s,3H),2.41(s,3H);HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,1.0 mL/min,254 nm), tR:20.2 min(major),26.5 min(minor);[ α ]D20=-35.0( c 0.85,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(4-甲基)苯基- N-对甲基苯磺酰基-2-咪唑啉(3h)1H NMR(500 MHz,CDCl3), δ:7.64(s,1H),7.46(d, J=7.5 Hz,2H),7.19(d, J=7.5 Hz,2H),7.04(s,4H),5.01(d, J=7.0 Hz,1H),4.65(d, J=7.0 Hz,1H),3.69(s,3H),2.40(s,3H),2.31(s,3H);HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,1.0 mL/min,254 nm), tR:14.5 min(minor),16.2 min(major);[ α ]D20=-49.2( c 0.68,THF),文献值[11]:[ α ]D20=+40( c 1.0,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(4-异丙基)苯基- N-对甲基苯磺酰基-2-咪唑啉(3i)1H NMR(500 MHz,CDCl3), δ:7.65(s,1H),7.41(d, J=7.5 Hz,2H),7.12(d, J=7.5 Hz,2H),7.067.01(m,4H),5.10(d, J=7.0 Hz,1H),4.68(d, J=7.0 Hz,1H),3.71(s,3H),2.882.78(m,1H),2.37(s,3H),1.20(d, J=6.0 Hz,6H);HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,1.0 mL/min,254 nm), tR:11.7 min(minor),13.4 min(major);[ α ]D20=-39.3( c 1.01,THF),文献值[11]:[ α ]D20=+35( c 1.0,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(4-叔丁基)苯基- N-对甲基苯磺酰基-2-咪唑啉(3j)1H NMR(500 MHz,CDCl3), δ:7.66(s,1H),7.39(d, J=7.0 Hz,2H),7.18(d, J=7.5 Hz,2H),7.11(d, J=7.5 Hz,2H),7.02(d, J=7.5 Hz,2H),5.13(d, J=7.0 Hz,1H),4.68(d, J=7.0 Hz,1H),3.71(s,3H),2.36(s,3H),1.27(s,9H);HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,1.0 mL/min,254 nm), tR:11.5 min(minor),13.4 min(major);[ α ]D20=-43.5( c 0.88,THF),文献值[11]:[ α ]D20=+32( c 1.0,THF)。

(4 S,5 R)-4-(甲氧羰基)-5-(4-甲氧基)苯基- N-对甲基苯磺酰基-2-咪唑啉(3k)1H NMR(500 MHz,CDCl3), δ:7.66(s,1H),7.44(d, J=8.5 Hz,2H),7.18(d, J=8.0 Hz,2H),7.06(d, J=8.5 Hz,2H),6.74(d, J=8.5 Hz,2H),5.04(d, J=7.5 Hz,1H),4.65(d, J=7.0 Hz,1H),3.77(s,3H),3.70(s,3H),2.39(s,3H);HPLC(Daicel Chilralcel OD-H, V(hex): V( iPrOH)=80:20,1.0 mL/min,254 nm), tR:33.4 min(major),40.4 min(minor);[ α ]D20=-30.5( c 0.75,THF)。

2 结果与讨论
2.1 催化剂1a-1g催化不对称Michael加成反应

将催化剂1a-1g用于异氰酸甲酯与苯甲醛亚胺2a的不对称Mannich反应中,考察各种催化剂的催化性能。 并考察温度、溶剂及催化剂用量对反应立体选择性的影响,结果见表1

表1 异氰基乙酸甲酯与苯甲醛亚胺的不对称Mannich反应条件筛选 a Table 1 Screening of reaction conditions for the asymmetric Mannich reaction a

表1结果可以看出:1)7种催化剂均能顺利催化异氰基乙酸甲酯与苯甲醛亚胺的不对称Mannich反应,得到45%~71%的产率。 其中奎宁衍生物催化剂1b表现出最好的催化性能(>99:1 dr(非对映比),57% ee,Entry 4)。 通过测定其比旋光值,并与文献报道的比旋光值进行比较[11],确定主要产物的绝对构型为(4 S,5 R)。 而奎尼丁衍生物1d催化该反应得到了 trans-(4 R,5 S)构型的主产物(50% ee,Entry 2);2)溶剂对反应的立体选择性有显著影响,甲苯是最佳溶剂(Entry 2),乙醚为溶剂时仅得到了7% ee的立体选择性(Entry 9);3)加入分子筛对反应的对映选择性有明显的影响,产品的 ee值提高了17%(Entry 11 vs Entry 2);4) 降低温度对该反应的立体选择性无改善,当温度由室温降至0和-20 ℃,产物的对映选择性和反应产率均有所降低(Entries 12-13 vs Entry 11);5)催化剂的摩尔分数由10%增加至20%或降至5%,反应的对映选择性未提高(Entries 14-15 vs Entry 11)。 综上所述,筛选出的最佳催化剂体系为:摩尔分数为10%的催化剂1b,甲苯为溶剂,4A分子筛,室温反应。

2.2 底物的扩展

将筛选出的催化条件应用于不同取代苯甲醛亚胺的不对称Mannich反应中,考察催化剂体系的普适性,结果见表2

表2 异氰基乙酸甲酯和不同取代苯甲醛亚胺的不对称Mannich反应 a Table 2 Scope of the enantioselective Mannich reaction of aromatic aldimines a

结果表明,筛选出的催化剂体系能够顺利催化异氰基乙酸甲酯与不同取代苯甲醛亚胺的不对称Mannich反应,得到了55%~80%的产率。 其中,对位取代的苯甲醛亚胺在该反应中表现出较好的立体选择性(Entries 6-11),4-甲基苯甲醛亚胺为底物的反应得到了最高的 ee值(82% ee,Entry 8);而邻位取代苯甲酰亚胺的反应得到较差的对映选择性(Entries 2-3);由此可知芳环上取代基种类和位置对反应的立体选择性有明显的影响。

3 结 论

将金鸡纳生物碱衍生物催化剂用于异氰基乙酸甲酯与芳香醛亚胺的不对称Mannich反应。 筛选出最佳催化剂体系,并将其应用于11种不同取代苯甲醛亚胺的反应,得到了最高达82% ee的对映选择性和>99:1的非对映选择性。 反应的普适性还有待于进一步提高。

参考文献
[1] Viso A, Pradilla R F, García A, et al. α, β-Diamino Acids: Biological Significance and Synthetic Approaches[J]. Chem Rev, 2005, 105(8): 3167-3196. [本文引用:1]
[2] Liu H, Du D M. Recent Advances in the Synthesis of 2-Imidazolines and Their Applications in Homogeneous Catalysis[J]. Adv Synth Catal, 2009, 351(4): 489-519. [本文引用:1]
[3] Ding H, Friestad G K. Asymmetric Addition of Allylic Nucleophiles to Imino Compounds[J]. Synthesis, 2005, 2005(17): 2815-2829. [本文引用:1]
[4] Hayashi T, Kishi E, Soloshonok V A, et al. Erythro-Selective Aldol-Type Reaction of N-Sulfonylaldimines with Methyl Isocyanoacetate Catalyzed by Gold(I)[J]. Tetrahedron Lett, 1996, 37(28): 4969-4972. [本文引用:1]
[5] Lin Y R, Zhou X T, Dai L X, et al. Ruthenium Complex-Catalyzed Reaction of Isocyanoacetate and N-Sulfonylimines: Stereoselective Synthesis of N-Sulfonyl-2-Imidazolines[J]. J Org Chem, 1997, 62(6): 1799-1803. [本文引用:1]
[6] Zhou X T, Lin Y R, Dai L X. A Simple and Practical Access to Enantiopure 2, 3-Diamino Acid Derivatives[J]. Tetrahedron: Asymmetry, 1999, 10(5): 855-862. [本文引用:1]
[7] Aydin J, Kumar K S, Eriksson L, et al. Palladium Pincer Complex-Catalyzed Condensation of Sulfonimines and Isocyanoacetate to Imidazoline Derivatives. Dependence of the Stereoselectivity on the Ligand Effects[J]. Adv Synth Catal, 2007, 349(17/18): 2585-2594. [本文引用:1]
[8] Zhou X T, Lin Y R, Dai L X, et al. A Catalytic Enantioselective Access to Optically Active 2-Imidazoline from N-Sulfonylimines and Isocyanoacetates[J]. J Org Chem, 1999, 64(4): 1331-1334. [本文引用:1]
[9] Benito-Garagorri D, Bocokić V, Kirchner K. Copper(Ⅰ)-Catalyzed Diastereoselective Formation of Oxazolines and N-Sulfonyl-2-Imidazolines[J]. Tetrahedron Lett, 2006, 47(48): 8641-8644. [本文引用:1]
[10] Aydin J, Rydén A, Szabó K J. Chiral Palladium-Pincer Complex Catalyzed Asymmetric Condensation of Sulfonimines and Isocyanoacetate[J]. Tetrahedron: Asymmetry, 2008, 9(15): 1867-1870. [本文引用:1]
[11] Zhang Z W, Lu G, Chen M M. Organocatalytic Asymmetric Mannich-Type Reaction of N-Sulfonylimines with Isocyanoacetate Leading to Optically Active 2-Imidazoline-4-Carboxylates[J]. Tetrahedron: Asymmetry, 2010, 21(13/14): 1715-1721. [本文引用:5]
[12] Nakamura S, Maeno Y, Ohara M, et al. Enantioselective Synthesis of Imidazolines with Quaternary Stereocenters by Organocatalytic Reaction of N-(Heteroarenesulfonyl)imines with Isocyanoacetates[J]. Org Lett, 2012, 14(12): 2960-2963. [本文引用:1]
[13] Cheng L, Liu L, Jia H, et al. Enantioselective Organocatalytic Anti-Mannich-Type Reaction of N-Unprotected 3-Substituted 2-Oxindoles with Aromatic N-Ts-Aldimines[J]. J Org Chem, 2009, 74(12): 4650-4653. [本文引用:1]
[14] Zhang T Y, He W, Zhao X Y, et al. Asymmetric Oxaziridination Catalyzed by Cinchona Alkaloid Derivatives Containing Sulfide[J]. Tetrahedron, 2013, 69(35): 7416-7422. [本文引用:1]