基于 N, N'-双(3-吡啶基)-对苯二甲酰胺和1,3,5-苯三甲酸的二维Co(Ⅱ)金属有机骨架的合成、结构和磁性
王琦a, 仝玉章b, 贾晓普a, 杨春a*, 王庆伦b,*, 廖代正b
a河北工业大学化工学院 天津 300130
b南开大学化学学院 天津 300071
通讯联系人:杨春,副教授; Tel:022-60202240; E-mail:ychun@hebut.edu.cn; 研究方向:功能配合物化学

共同通讯联系人:王庆伦,副教授; Tel:022-23505063; E-mail:wangql@nankai.edu.cn; 研究方向:功能配合物和分子磁学

摘要

在水热条件下,基于配体 N, N'-双(3-吡啶基)-对苯二甲酰胺(3-bptpa)和1,3,5-苯三甲酸(1,3,5-H3btc),合成了一例具有二维格子结构的钴(Ⅱ)MOF[Co(3-bptpa)(1,3,5-Hbtc)]·2H2O(1),并进行了红外光谱(FT-IR)、元素分析(EDS)、差热-热重分析(DTA-TG)、X射线单晶衍射(XRD)和磁学表征。 结果表明,每个1,3,5-Hbtc2-提供1个螯合配位羧基和1个桥连配位羧基与Co(Ⅱ)离子配位。 中心对称的二聚体[Co(3-bptpa)(1,3,5-Hbtc)]2通过桥连配位的羧基连接成1D梯形链,相邻的梯形链通过3-bptpa与Co(Ⅱ)的配位作用连接为2D格子,从而形成CoN2O4变形八面体的配位构型。对配合物1在16~300 K的磁化率数据,使用八面体场下旋轨耦合的各向同性的单离子近似和分子场理论进行分析,Co(Ⅱ)离子表现强的旋轨耦合作用( λ=-100.4 cm-1),相邻的Co(Ⅱ)离子之间通过桥连配位的羧基传递弱的反铁磁相互作用( zj'=-0.618 cm-1)。

关键词: 二吡啶二酰胺配体; 水热合成; 钴(Ⅱ); 金属-有机骨架; 磁性
中图分类号:O646.8 文献标志码:A 文章编号:1000-0518(2019)12-1397-09
Syntheses, Crystal Structures and Magnetic Properties of a 2D Cobalt(Ⅱ) Metal-Organic Framework Based on N, N'-Bis-(3-Pyridyl) Terephthalamide and 1,3,5-Benzenetricarboxylic Acid
WANG Qia, TONG Yuzhangb, JIA Xiaopua, YANG Chuna, WANG Qinglunb, LIAO Daizhengb
aSchool of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130,China
bDepartment of Chemistry,Nankai University,Tianjin 300071,China
Corresponding author:YANG Chun, associate professor; Tel:022-60202240; E-mail:ychun@hebut.edu.cn; Research interests:functional coordination complex chemistry

Co-corresponding author:WANG Qinglun, associate professor; Tel:022-23505063; E-mail:wangql@nankai.edu.cn; Research interests:functional coordination compounds and molecular magnetism

Abstract

Based on N, N'-bis-(3-pyridyl)terephthalamide (3-bptpa) and 1,3,5-benzenetricarboxylic acid (1,3,5-H3btc), a Co(Ⅱ) metal-organic framework [Co(3-bptpa)(1,3,5-Hbtc)]·2H2O(1) with a 2D grid-like structure was hydrothermally synthesized. Complex 1 was characterized by X-ray crystallography, Fourier transform infrared (FT-IR) spectra, elemental analysis, thermal analysis and magnetic measurements. Each 1,3,5-Hbtc2- provided one chelating and one bridging carboxylate groups to coordinate to Co(Ⅱ) cations. The centrosymmetric dimer [Co(3-bptpa)(1,3,5-Hbtc)]2 was assembled into a 1D ladder-like chains by bridging carboxylate groups. The neighbouring chains were connected into 2D grid-like network by the coordination of 3-bptpa to Co(Ⅱ), resulting in the distorted CoN2O4 octahedral coordination sphere. The magnetic data of complex 1 in the temperature range 16~300 K were analyzed including the one-ion approximation for Co(Ⅱ) with spin-orbit coupling in Oh symmetry and intermolecular exchange interaction( zj') in the molecular field approximation leading to λ=-100.4 cm-1 and zj'=-0.618 cm-1. CCDC:1910964

Keyword: dipyridine diamide ligand; hydrothermal synthesis; cobalt(Ⅱ); metal-organic framework(MOF); magnetic properties

金属有机框架(Metal-Organic Frameworks,MOFs)作为多孔晶态材料的一个分支,以其结构多样性、优异的热稳定性和可调节的多种功能而著称,在气体储存与分离、分子纳米磁性材料、发光传感器[1,2,3,4,5]等多个领域均有潜在的应用价值。 通过各种合成策略,如混合配体方法[6,7]、对称匹配调节配体插入策略[8]和原位合成方法[9]制备多功能的MOFs已经取得了重要进展。 在这些合成策略中,混合配体法是一种构建MOFs很有前景的方法,可以获得在常规条件下难以获得或不易形成的新型功能MOFs。

二吡啶酰胺配体因其具有强的配位能力、多种配位导向、充足的配位点和潜在的氢键位点,而成为合成配位聚合物的重要配体[10,11,12]。 按照混合配体策略,可以合成结构多样、性质独特的MOFs,比如具有新颖荧光性质的Cu(Ⅱ)-MOFs和Cd(Ⅱ)- MOFs[13,14,15],具有高比表面和H2吸附能力的Zn(Ⅱ)-MOFs[16],以及具有自旋转换[17]、单离子磁体[18,19,20]、变磁性[21,22]等特定磁学性质的MOFs等,但关于利用多元羧酸合成骨架电荷可调、具有刺激响应性的MOFs材料的报道还相对较少[23]

我们采用混合配体策略,选择二吡啶二酰胺配体 N, N'-双(3-吡啶基)-对苯二甲酰胺( N, N'-bis-(3-pyridyl)terephthalamide,缩写为3-bptpa)与1,3,5-苯三甲酸(1,3,5-benzenetricarboxylic acid,缩写为1,3,5-H3btc)作为桥连配体(图1),同时选择具有显著磁各向异性的Co(Ⅱ)离子作为金属中心,合成了[Co(3-bptpa)(1,3,5-Hbtc)]·2H2O(1),研究了其晶体结构和磁学性质,该二维Co(Ⅱ)-MOF骨架中含有未解离的羧基,具有pH刺激响应性的可能。

图1 配体3-bptpa和1,3,5-H3btc的结构Fig.1 Structures of 3-bptpa and 1,3,5-H3btc

1 实验部分
1.1 试剂和仪器

所用试剂均为市售分析纯。 Vector-22型傅里叶红外光谱仪(FT-IR,德国Bruker公司);Bruker Smart 1000 CCD型X射线单晶衍射仪(德国Bruker 公司);Quantum Design MPMS-7 SQUID型磁强计(美国Quantum Design公司);Perkin-Elmer 240C型元素分析仪(美国Perkin-Elmer公司);HCT-3型热分析系统(北京恒久科学仪器厂)。

1.2 配体3-bptpa和配合物[Co(3-bptpa)(1,3,5-Hbtc)]·2H2O(1)的合成

按照文献[24]方法,将对苯二甲酰氯(2.02 g,10 mmol)溶解于30 mL二氯甲烷中,然后置于圆底烧瓶中,在冰水浴状态下用恒压漏斗加入三乙胺(4.2 mL,30 mmol)以及3-氨基吡啶(1.882 g,20 mmol)的无水乙腈溶液(20 mL),将混合物在室温下搅拌2 h,然后加热回流3 h,随后将混合物冷却至室温后,过滤收集固体,分别用饱和碳酸氢钠水溶液、水和乙醚洗涤沉淀,真空干燥,得到3-bptpa 2.1 g,产率65.1%。 IR(KBr), σ/cm-1:3347s,2345w,1679m,1560s,1482m,1334m,719w。

将CoCl2·6H2O(0.048 g,0.2 mmol)、3-bptpa(0.0318 g,0.10 mmol)、1,3,5-H3btc(0.021 g,0.10 mmol)和NaOH(0.012 g,0.30 mmol)的混合物中加入12 mL水,在室温下充分搅拌30 min[25],转移到25 mL的具有聚四氟乙烯内衬的高压反应釜中,将封闭好的反应釜放入烘箱中,升温至120 ℃,恒温96 h,再以4 ℃/h的速率降至室温,分离得到配合物1的粉红色块状晶体,用蒸馏水洗涤,室温下干燥并收集产品,产率为37%。 CoC27H22N4O10元素分析计算值/%:C 52.19,H 3.57,N 9.02;实验值/%:C 52.08,H 3.72,N 9.10。 IR(KBr), σ/cm-1:3436s,2350w,1679m,1625m,1545s,1391s,1104m,702w,528w。

1.3 晶体结构测定

单晶X射线衍射结构测定在Bruker Smart 1000 CCD衍射仪上进行。 在113 K下,用经过石墨单色器单色化的Mo射线( λ=0.071073 nm)以 ω=2 θ扫描方式收集衍射数据。 晶体结构用直接法解出,然后用最小二乘法对全部非氢原子坐标及其温度因子进行精修。 H原子的位置由理论加氢得到。 所有的计算使用SHELXS-97和SHELXL-97程序包[26,27]进行。 配合物[Co(3-bptpa)(1,3,5-Hbtc)]·2H2O(1)的具体晶体学数据和结构精修参数列于表1。 CCDC:1910964。

表1 配合物1的晶体学参数 Table 1 Crystal data and structure refinement for complex 1
2 结果与讨论
2.1 晶体结构分析

配合物1的结构属于三斜晶系,P-1空间群。 1,3,5-Hbtc2-共有两个羧基解离并与Co(Ⅱ)离子配位,其中1个羧基作为双齿配体与1个Co(Ⅱ)离子螯合配位(称为螯合配位的羧基),另一个羧基作为 μ21: η1型桥连配体以syn-syn模式与两个Co(Ⅱ)离子配位(称为桥连配位的羧基)。

图2所示,在其不对称单元[Co(3-bptpa)(1,3,5-Hbtc)]里存在着1个Co2+离子、1个3-bptpa配体和1个1,3,5-Hbtc2-阴离子和2个结晶水分子。 来自1,3,5-Hbtc2-的1个螯合配位的羧基与Co(Ⅱ)离子配位(Co(1)—O(3)=0.22185(17) nm,Co(1)—O(4) =0.22074(17) nm),来自3-bptpa的1个吡啶基N原子从接近垂直于Co(1)O(3)O(4)平面的方向上与Co(Ⅱ)离子配位(Co(1)—N(1)=0.2140(2) nm,∠N(1)—Co(1)—O(3)=87.72(7),∠N(1)—Co(1)—O(4)=89.77(7)°)。

图2 配合物1的不对称单元[Co(3-bptpa)(1,3,5-Hbtc)]的结构Fig.2 The structure of asymmetric unit [Co(3-bptpa)(1,3,5-Hbtc)]. The hydrogen atoms and crystallization water molecules are omitted for clarity

图3所示,来自1,3,5-Hbtc2-的桥连配位的羧基的1个O原子与Co(Ⅱ)离子配位(Co(1)—O(5A)=0.20152(16) nm),2个不对称单元[Co(3-bptpa)(1,3,5-Hbtc)]通过这种配位作用连接为1个中心对称的二聚体[Co(3-bptpa)(1,3,5-Hbtc)]2,同时2个螯合配位的羧基、2个Co(Ⅱ)离子和2个桥连配位的羧基连接形成近乎共面的16元环结构,在这个16元环结构中相邻的Co(Ⅱ)离子(Co(1)和Co(1A))之间的距离为0.7402(1) nm。

图3 中心对称的二聚体[Co(3-bptpa)(1,3,5-Hbtc)]2的结构Fig.3 The structure of centrosymmetric dimer [Co(3-bptpa)(1,3,5-Hbtc)]2

图4A所示,相邻的二聚体通过一对Co—O配位键[Co(1) —O(6)#2)连接为一维梯形链[Co2(3-bptpa)2( μ3-1,3,5-Hbtc)] n,同时由2个桥连配位的羧基和2个Co(Ⅱ)离子交替连接形成8元环结构[O—C—O—Co]2,在这个8元环结构中相邻的Co(Ⅱ)离子(如Co(1)和Co(1)#4)之间的距离为0.3845(11) nm,和文献[28]中羧基以syn-syn模式桥连的2个Co(Ⅱ)离子之间的距离0.3339(2) nm相近。 相邻的一维梯形链之间通过Co(Ⅱ)与吡啶基的配位作用(Co(1)—N(4)#3=0.2164(2) nm)连接为电中性的二维格子[Co2( μ2-3-bptpa)2( μ3-1,3,5-Hbtc)] n。 在二维格子中,1个Co(Ⅱ)离子与来自3个1,3,5-Hbtc2-配体的4个O原子[O(4)、O(3)、O(5)#1和O(6)#2]和来自2个3-bptpa配体的2个N原子[N(1)和N(4)#3]配位,从而形成CoN2O4变形八面体的配位构型(图4B)。 Co—O键长在0.20152~0.22185 nm之间,Co—N键长分别为Co(1)—N(1)=0.2140 nm和Co(1)—N(4)#3=0.2164 nm,与文献[29]中具有八面体配位环境的Co(Ⅱ)配合物的键长数据一致(表2)。 被1个3-bptpa配体连接的2个相邻Co(Ⅱ)离子(如Co(1)和Co(1)#5)之间的距离为1.75110(69) nm。

图4 配合物1的二维格子结构和Co(Ⅱ)的配位环境图Fig.4 The 2D grid-like assemblies and the coordination environment of Co(Ⅱ) ion in complex 1
(Symmetry code: #1 - x+3,- y,- z; #2 x-1, y, z; #3 x+1, y-1, z-1; #4 2- x,- y,- z; #5 x-1, y+1, z+1)

表2 配合物1的部分键长(nm)和键角(°) Table 2 The selected bond lengths(nm) and angles(°) for complex 1

结晶水分子[O(9)和O(10)]分布在2D格子中,其中O(10)分别与未解离的羧基氧原子[O(7)]、螯合配位的羧基O原子[O(4)]和酰胺的羰基氧原子[O(2)]形成氢键[O(10A) ••••O(7A)=0.2606; O(10A) ••••O(4A)=0.2932;O(10A) ••••O(2D)=0.2808 nm];O(9)分别与螯合配位的羧基O原子(O(3))和酰胺的氨基N原子(N(2))形成氢键[O(9A) ••••o(3A)=0.2853;O(9A) ••••N(2B)=0.2984 nm]。 2D格子通过氢键和范德华力堆积为3D多孔结构,相邻层间的Co••••Co 最近距离为0.7973 nm。

2.2 配合物1的红外光谱

图5所示,在室温下,在4000~400 cm-1范围内对配合物1进行固态红外光谱测试(KBr压片)。 在3436 cm-1附近的宽峰,归属为水分子和质子未解离的羧基中的羟基O—H及氨基N—H的伸缩振动[30],而且它们参与形成氢键。 在1679 cm-1处有宽且强的振动吸收,归属为未解离的羧基—COOH的伸缩和弯曲振动[13,31]。 螯合配位和双齿桥连配位的羧基的不对称伸缩振动分裂为1625和1545 cm-1两个吸收峰,1391 cm-1处的吸收峰归属为羧基的对称伸缩振动[32,33,34,35]。 吡啶环上C=N伸缩振动峰[36]也出现在1545 cm-1附近与羧基的不对称伸缩振动重叠[11],比自由配体3-bptpa中吡啶环的C=N伸缩振动吸收峰1482蓝移63 cm-1。 在528 cm-1附近的吸收归属为配位键Co(Ⅱ)—N的伸缩振动[37]

图5 配体3-bptpa和配合物1的红外光谱图Fig.5 IR spectra of complex 1 and 3-bptpa

2.3 配合物1的热稳定性

图6所示,为研究配合物1的热稳定性,在N2气氛下30~800 ℃范围内对配合物1进行了热重分析(Thermogravimetric Analyses,TGA)和差热分析(Differential Thermal Analyses,DTA),升温速率为10 ℃/min。 配合物1的TGA曲线显示明显的两步失重,第1步失重在103~129 ℃温度范围内,归属为[Co(3-bptpa)(1,3,5-Hbtc)]·2H2O结晶水分子的失去。失重率理论值为5.79%,实验值为4.90%,实验值偏低可能是因为所测样品部分风化所致。 第2步失重在384~532 ℃范围内,归属为配体的破坏和MOF骨架的逐步坍塌。 推测550 ℃以上的残渣主要是CoO,失重率理论值为87.94%,实验值为86.45%。 DTA曲线显示配合物1有两个吸热峰(125和398 ℃)和1个放热峰(470 ℃),2个吸热峰分别对应结晶水的失去和MOF骨架的破坏,放热峰对应有机配体被氧化和CoO的形成。

图6 配合物1的热重分析和差热分析Fig.6 TGA and DTA curves of complex 1

2.4 配合物1的磁学性质

在2~300 K的温度范围内和1000 Oe的直流磁场强度下,测定配合物1的变温磁化率。 如图7所示,在300 K时, μeff值为4.592 B.M.,明显大于一个高自旋Co(Ⅱ)离子的仅自旋值3.873 B.M.( S=3/2, g=2.0),但与报导的具有一级轨道贡献的八面体场中基态为4 T1g的Co(Ⅱ)离子的值( μeff=4.647~5.215 B.M.)一致[18,19,38]。 这是由于Co(Ⅱ)离子强的轨道磁矩贡献所致。

图7 配合物1的摩尔磁化率(O)和有效磁矩(Δ)随温度变化曲线.(实线是16~300 K数据最佳拟合的结果)Fig.7 The χM(O) and μeff(Δ) verus T plots of complex 1(The solid lines represent the least-squares fitting of the data to the theoretical equation from 16 to 300 K)

随着温度从300 K降低到75 K, μeff值基本保持不变,然后开始急剧降低,在2 K时下降到最小值1.625 B.M.,显著低于一个孤立的Co(Ⅱ)离子的仅自旋值3.720 B.M.( Seff=1/2, g≈4.3)[39],这是晶体场效应和旋轨耦合作用共同作用的结果,与文献报道的低温值2.46 B.M.[40]和2.94 B.M.[41] 接近。 说明配合物1中既存在显著的旋轨耦合(spin-orbit coupling)作用,同一层内相邻的Co(Ⅱ)离子之间预期也通过syn-syn模式桥连配位的羧基传递的较弱的反铁磁相互作用[40,42,43]

为了定量评估Co(Ⅱ)离子的旋轨耦合作用和相邻的Co(Ⅱ)离子之间的磁相互作用,基于Co(Ⅱ)离子的轨道贡献,使用八面体场下旋轨耦合的各向同性的单离子近似,可推出其磁化率的理论表达式:

χCo=Nβ23KT[ND]N=7(3-A)2x5+12(A+2)225A+{2(11-2A)2x45+176(A+2)2675A}exp(-5Ax2)+{(A+5)2x9-20(A+2)227A}exp(-4Ax)D=x3[3+2exp(-5Ax2)+exp(-4Ax)]A=1.51.0,x=λkT

式中, λ为旋轨耦合参数(对自由Co(Ⅱ)离子, λ=-170 cm-1)[39]。 同时使用分子场近似处理Co(Ⅱ)离子间通过羧基桥传递的磁相互作用:

χ'M=χM1-(2zJ'/Ng2β2)χM

图7所示,对16~300 K数据最佳拟合后得到: λ=-100.4 cm-1, A=1.0, zj'=-0.618 cm-1,一致性因子 R=1.62×10-3。 旋轨耦合常数 λ值明显小于自由的Co(Ⅱ)离子,归因于Co—N和Co—O配位键的共价性[44] A=1.0说明配合物1中Co(Ⅱ)周围由羧基和吡啶基形成的N2O4八面体配位场很强。 zj'=-0.618 cm-1表明相邻Co(Ⅱ)离子通过羧基桥传递较弱的反铁磁相互作用,这与按照Curis-Weiss定律[ χM= C/( T- θ)]拟合所得的 θ<0的结果一致( T=2300 K, C=2.650 (cm3·K)/mol, θ=-6.280 K, R2=0.99)。

3 结 论

在水热条件下,CoCl2与混合配体(3-bptpa和1,3,5-H3btc)反应,合成了一例二维格子结构的MOF[Co(3-bptpa)(1,3,5-Hbtc)]·2H2O(1),MOF中Co(Ⅱ)采取CoN2O4变形八面体的配位构型。 磁性研究表明,Co(Ⅱ)离子表现强的旋轨耦合作用( λ=-100.4 cm-1),相邻的Co(Ⅱ)离子主要通过桥连配位的羧基传递弱的反铁磁相互作用( zj'=-0.618 cm-1)。 该二维Co(Ⅱ)-MOF骨架中含有未解离的羧基,具有pH刺激响应性的可能,关于pH对磁学性质的调控作用正在研究中。

参考文献
[1] Li J R, Sculley J, Zhou H C. Metal Organic Frameworks for Separations[J]. Chem Rev, 2012, 112(2): 869-932. [本文引用:1]
[2] Duan J, Higuchi M, Krishna R, et al. High CO2/N2/O2/CO Separation in a Chemically Robust Porous Coordination Polymer with Low Binding Energy[J]. Chem Sci, 2014, 5: 660-666. [本文引用:1]
[3] Coronado E, Espallargas G M. Dynamic Magnetic MOFs[J]. Chem Soc Rev, 2013, 42: 1525-1539. [本文引用:1]
[4] Zou J Y, Shi W, Xu N, et al. A Homospin Cobalt(Ⅱ) Topological Ferrimagnet[J]. Chem Commun, 2013, 49: 8226-8228. [本文引用:1]
[5] Jia X X, Yao R X, Zhang F Q, et al. A Fluorescent Anionic MOF with Zn4(trz)2 Chain for Highly Selective Visual Sensing of Contaminants: Cr(Ⅲ) Ion and TNP[J]. Inorg Chem, 2017, 56(5): 2690-2696. [本文引用:1]
[6] Zou J Y, Shi W, Gao H L, et al. Spin Canting and Metamagnetism in 3D Pillared-Layer Homospin Cobalt(Ⅱ) Molecular Magnetic Materials Constructed via a Mixed Ligands Approach[J]. Inorg Chem Front, 2014, 1: 242-248. [本文引用:1]
[7] Yin Z, Zhou Y L, Zeng M H, et al. The Concept of Mixed Organic Ligands in Metal-Organic Frameworks: Design, Tuning and Functions[J]. Dalton Trans, 2015, 44: 5258-5275. [本文引用:1]
[8] Zhao X, Bu X H, Zhai Q G, et al. Pore Space Partition by Symmetry-Matching Regulated Ligand Insertion and Dramatic Tuning on Carbon Dioxide Uptake[J]. J Am Chem Soc, 2015, 137(4): 1396-1399. [本文引用:1]
[9] Feng Y Y, Liu X Y, Duan L Q, et al. In-Situ Synthesized 3D Heterometallic Metal-Organic Framework(MOF) as High-Energy-Density Materials Shows High Heat of Detonation, Good Thermostability and Insensitivity[J]. Dalton Trans, 2015, 44: 2333-2339. [本文引用:1]
[10] Liu G C, Yu H X, Lin H Y, et al. Spacers-Induced Structural Diversity of Cobalt Coordination Polymers Based on “V”-type Dipyridylamide and Dicarboxylic Ligands: Fluorescent, Magnetic and Photocatalytic Properties[J]. Polyhedron, 2017, 126: 205-213. [本文引用:1]
[11] Hsu Y F, Lin C H, Chen J D, et al. A Novel Interpenetrating Diamondoid Network from Self-assembly of N, N'-Di(4-pyridyl)adipoamide and Copper Sulfate: An Unusual 12-Fold, [6+6] Mode[J]. Cryst Growth Des, 2008, 8(4): 1094-1096. [本文引用:2]
[12] Cheng P C, Kuo P T, Liao Y H, et al. Ligand-Isomerism Controlled Structural Diversity of Zn(Ⅱ) and Cd(Ⅱ) Coordination Polymers from Mixed Dipyridyladipoamide and Benzenedicarboxylate Ligands[J]. Cryst Growth Des, 2013, 13(2): 623-632. [本文引用:1]
[13] Wang X L, Luan J, Sui F F, et al. Structural Diversities, Fluorescent and Photocatalytic Properties of a Series of Cu Coordination Polymers Constructed from Flexible Bis-pyridyl-Bis-amide Ligands with Different Spacer Length and Different Aromatic Carboxylates[J]. Cryst Growth Des, 2013, 13(8): 3561-3576. [本文引用:2]
[14] Wang X L, Sui F F, Lin H Y, et al. Aromatic Polycarboxylate-Tuned Assembly of Three New 2D Copper(Ⅱ) Complexes Derived from a Flexible Bis(pyridylamide) Ligand[J]. Aust J Chem, 2013, 66(1): 67-74. [本文引用:1]
[15] Wang X L, Xiong Y, Sha X T, et al. Various Polycarboxylate-Directed Cd(Ⅱ) Coordination Polymers Based on a Semirigid Bis-pyridyl-Bis-amide Ligand: Construction and Fluorescent and Photocatalytic Properties[J]. Cryst Growth Des, 2017, 17(2): 483-496. [本文引用:1]
[16] Dybtsev D N, Chun H, Kim K. Rigid and Flexible: A Highly Porous Metal Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. Angew Chem Int Ed, 2004, 43(38): 5033-5036. [本文引用:1]
[17] Liu W, Peng Y Y, Wu S G, et al. Guest-Switchable Multi-Step Spin Transitions in an Amine-Functionalized Metal-Organic Framework[J]. Angew Chem Int Ed, 2017, 129(47): 15178-15182. [本文引用:1]
[18] Shi L, Shao D, Wei H Y, et al. Two Interpenetrated Cobalt(Ⅱ) Metal-Organic Frameworks with Guest-Dependent Structures and Field-Induced Single-Ion Magnet Behaviors[J]. Cryst Growth Des, 2018, 18(9): 5270-5278. [本文引用:2]
[19] Wang Y L, Chen L, Liu C M, et al. Field-Induced Slow Magnetic Relaxation and Gas Adsorption Properties of a Bifunctional Cobalt(Ⅱ) Compound[J]. Inorg Chem, 2015, 54(23): 11362-11368. [本文引用:2]
[20] Vallejo J, Fortea-Pérez F R, Pardo E, et al. Guest-Dependent Single-Ion Magnet Behaviour in a Cobalt(Ⅱ) Metal Organic Framework[J]. Chem Sci, 2016, 7: 2286-2293. [本文引用:1]
[21] Gupta K, Dadwal A, Rana S, et al. Metamagnetism in Nanosheets of Co-MOF with TN at 26 K and a Giant Hysteretic Effect at 5 K[J]. Inorg Chem, 2018, 57(24): 15044-15047. [本文引用:1]
[22] Lim K S, Lee W R, Lee H G, et al. Control of Interchain Antiferromagnetic Coupling in Porous Co(Ⅱ)-Based Metal-Organic Frameworks by Tuning the Aromatic Linker Length: How Far Does Magnetic Interaction Propagate?[J]. Inorg Chem, 2017, 56(13): 7443-7448. [本文引用:1]
[23] Tian C B, Han Y H, He Z Z, et al. Magnetic Tuning of an Anionic Co-MOF through Deionization of the Framework: Spin-Canting, Spin-Flop, and Easy-Plane Magnetic Anisotropy[J]. Chem Eur J, 2017, 23(4): 767-772. [本文引用:1]
[24] Qin Z, Jennings M C, Puddephatt R J. Self-assembly in Palladium(Ⅱ) and Platinum(Ⅱ) Chemistry: The Biomimetic Approach[J]. Inorg Chem, 2003, 42(6): 1956-1965. [本文引用:1]
[25] Wang X L, Luan J, Lin H Y, et al. The Various Architectures and Properties of a Series of Coordination Polymers Tuned by the Central Metals[J]. Dalton Trans, 2014, 43: 8072-8082. [本文引用:1]
[26] Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution[CP]. University of Gö ttingen. Germany, 1997. [本文引用:1]
[27] Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structures[CP]. University of Göttingen. Germany, 1997. [本文引用:1]
[28] Li M X, Zhang Y F, He X, et al. Diverse Structures and Ferro-/Ferri-/Antiferromagnetic Interactions of Pyridyltetrazole Coordination Polymers with Polycarboxylate Auxiliary Ligands[J]. Cryst Growth Des, 2016, 16(5): 2912-2922. [本文引用:1]
[29] Wang X L, Mu B, Lin H Y, et al. Substituent Groups from Aromatic Dicarboxylates Modulated Structural Diversification in the Assembly of Co(Ⅱ) Complexes Based on the Bis-pyridyl-Bis-amide Ligands[J]. Sci China Chem, 2013, 56(5): 557-566. [本文引用:1]
[30] Gangu K K, Maddila S, Mukkamala S B, et al. A 3D Supramolecular Assembly of Co(Ⅱ) MOF Constructed with 2, 5-Pyridinedicarboxylate Strut and Its Catalytic Activity towards Synthesis of Tetrahydrobiphenylene-1, 3-Dicarbonitriles[J]. Inorg Chim Acta, 2018, 482: 830-837. [本文引用:1]
[31] YUN Jixing, HU Zhili, LI Yumeng, et al. Synthesis. Synthesis, Structure and Photoelectric Property of a Series of Ni(Ⅱ) Complexes Constructed Through Aromatic Carboxylic Ligands[J]. Chem J Chinese Univ, 2018, 39(10): 2161-2169(in Chinese).
贠吉星, 胡志莉, 李禹蒙, . 由芳香羧酸构筑的系列配合物的合成、结构及光电性能[J]. 高等学校化学学报, 2018, 39(10): 2161-2169. [本文引用:1]
[32] Deacon G B, Phillips R J. Relationships Between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination[J]. Coord Chem Rev, 1980, 33(3): 227-250. [本文引用:1]
[33] Yang G P, Wang Y Y, Ma L F, et al. Hydrothermal Syntheses and Characterizations of Three Coordination Polymers Based on Mixed Organic Ligands[J]. Eur J Inorg Chem, 2007, 24: 3892-3898. [本文引用:1]
[34] Wang R, Zhang J, Li L. Conformation Preference of a Flexible Cyclohexanetetracarboxylate Ligand in Three New Metal-Organic Frameworks: Structures, Magnetic and Luminescent Properties[J]. Inorg Chem, 2009, 48(15): 7194-7200. [本文引用:1]
[35] Zeng M H, Tan Y X, He Y P, et al. A Porous 4Fold-Interpenetrated Chiral Framework Exhibiting Vapochromism, Single-Crystal-to-Single-Crystal Solvent Exchange, Gas Sorption, and a Poisoning Effect[J]. Inorg Chem, 2013, 52(5): 2353-2360. [本文引用:1]
[36] Wang X L, Wu X M, Liu G C, et al. Four Thiophene-Pyridyl-Amide-Based Zn/Cd Coordination Polymers: Assembly, Structures, Photocatalytic Properties and Fluorescent Recognition for Fe3+[J]. J Solid State Chem, 2017, 249: 51-57. [本文引用:1]
[37] Batool S S, Gilani S R, Tahir M N, et al. Synthesis, and Structural Characterization of Mixed Ligand Copper(Ⅱ) Complexes of N, N, N', N'-Tetramethylethylenediamine Incorporating Carboxylates[J]. J Mol Struct, 2017, 1148: 7-14. [本文引用:1]
[38] Yang C, Wang Q L, Tang G T, et al. Synthesis, Crystal Structure, Spectroscopy and Magnetism of a Mixed Valence Co(Ⅲ)-Co(Ⅱ)-Co(Ⅲ) Complex Stabilized by N-(2-Hydroxybenzyl)salicylaldimine[J]. J Coord Chem, 2010, 63(3): 505-514. [本文引用:1]
[39] Fabelo O, Pasán J, Canadillas-Delgado L, et al. Cobalt(Ⅱ) Sheet-Like Systems Based on Diacetic Ligands: From Subtle Structural Variances to Different Magnetic Behaviors[J]. Inorg Chem, 2009, 48(13): 6086-6095. [本文引用:2]
[40] Jia H P, Li W, Ju Z F, et al. Synthesis, Structure and Magnetism of Metal-Organic Framework Materials with Doubly Pillared Layers[J]. Eur J Inorg Chem, 2006, 21: 4264-4270. [本文引用:2]
[41] Rueff J M, Masciocchi N, Rabu P, et al. Synthesis, Structure and Magnetism of Homologous Series of Polycrystalline Cobalt Alkane Mono- and Dicarboxylate Soaps[J]. Chem Eur J, 2002, 8(8): 1813-1820. [本文引用:1]
[42] Li L, Zou J Y, You S Y, et al. Assembly of a New (3, 6)-Connected Cobalt(Ⅱ) Metal-Organic Framework via a Mixed Ligands Approach[J]. Polyhedron, 2018, 141: 262-266. [本文引用:1]
[43] Fabelo O, Canñadillas-Delgado L, Pasán J, et al. Study of the Influence of the Bridge on the Magnetic Coupling in Cobalt(Ⅱ) Complexes[J]. Inorg Chem, 2009, 48(23): 11342-11351. [本文引用:1]
[44] Masuhara N, Hayami S, Motokawa N, et al. Crystal Structure and Magnetic Property of Two Novel 1-D Cobalt(Ⅱ) Assemblies[J]. Chem Lett, 2007, 36(1): 90-91. [本文引用:1]