二氧化钛(TiO2)多孔材料由于具有优异的物理化学性质,在催化、能源、传感等领域展现了重要的研究价值和应用潜力。 TiO2的多孔结构特别在一些涉及异相反应的应用(如异相催化、气敏等)中具有重要的优势,如丰富的传质通道和表面活性位点、可调变的孔尺寸等。 目前,多孔TiO2功能材料的开发和优化研究正在不断推进其工业化应用的进程。 本文围绕多孔TiO2的几个优势应用领域(光催化、光生电子存储和气敏)的研究进展,从结构和缺陷设计出发介绍和讨论性能调控策略。 本文还特别介绍了本课题组通过光诱导合成法开发的一系列多孔TiO2基功能材料,并对相关性能研究领域的关键问题进行了分析和展望。
Porous titania(TiO2) materials have important values and potentials in the fields of catalysis, energy, sensing, etc., due to their outstanding physical and chemical properties. In some applications associated with heterogeneous reactions, porous structures of TiO2 are advantageous because they have rich channels for mass transfer and surface active sites with tunable pore sizes. Nowadays, porous TiO2 materials are constantly developed and optimized in order to promote their industry applications. This review focuses on the research progress of porous TiO2 and their applications in photocatalysis, photogenerated electron storage, and gas sensing, in which the performance regulated through the design of structures and defects are introduced and discussed. Our research work about a series of porous TiO2 functional materials based on photochemical synthesis is specially introduced. Finally, the key issues and development prospects of porous TiO2 and their performances are also discussed.
二氧化钛(TiO2)是被研究和应用最广泛的半导体功能材料之一,这主要得益于其丰富的储量和优异的物理化学性质[1,2]。 TiO2多孔材料的结构特征在一些涉及异相反应的应用(如异相催化、气敏等)中展现了重要的优势[3,4]:1)丰富的传质通道增加了反应质与活性位点的接触机会;2)大比表面积实现了丰富的表面活性和修饰位点;3)可调节的孔尺寸对反应/产物分子具有尺寸选择性。
目前已报道的多孔TiO2功能材料形式多样。 多孔TiO2的设计思路已从最初的孔尺寸设计拓展到丰富多样的结构,如多孔薄层[5,6,7]、多孔空心结构[4,8,9,10,11]、纳米自组装结构[4,12,13]等。 通过特定的结构设计可以多方面地满足目标性能的需求,包括比表面积、传质通道、活性晶面、加工固定、分离回收等。 另外,通过在多孔TiO2材料的体相或表面设计缺陷,能够有效地调节其能带和表面性质,被广泛地应用于优化多孔TiO2的光能利用、气体吸附、催化活性等方面的性能。 可行的合成方案是实现结构和缺陷设计的基础。 多孔TiO2的合成方法主要包括模板法[14,15,16,17,18]和无模板法[8,12,19,20,21,22]。 其中,最早开发应用的模板法常常存在一些局限性,如合成步骤繁琐耗时,模板脱除时孔道易坍塌等。 近年来不断涌现出多种无模板合成法,例如水热合成[8,12]和电化学合成[19,22]方法。 我们课题组设计的光驱动合成法成功构筑了具有超大比表面积的无定形多孔Ti
本文围绕多孔TiO2的几个优势应用领域(光催化、光生电子存储和气敏)的研究进展,从结构和缺陷设计出发介绍和讨论性能优化策略。 其中特别介绍了我们课题组基于光驱动合成法开发的一系列多孔TiO2基功能材料。 最后,分析并展望了多孔TiO2在性能优化方面的一些关键问题。
光催化与解决当下能源和环境问题,实现可持续发展密切相关。 光催化反应过程是基于能带理论:光能激发价带电子跃迁至导带,同时价带上会留下一个空穴,除了部分光生电荷在半导体的体相复合,其余迁移至表面参与氧化还原反应。 多孔TiO2由于具有的优异的物理化学性质和多孔结构特征,在光催化应用中展现了重要的研究和应用前景。
TiO2晶体材料要比无定形材料更具光催化性能优势,但往往较难构筑成多孔结构,这主要是由于孔道结构在高温晶化过程中容易坍塌。 通过硬模板剂在TiO2的高温晶化过程中稳定多孔结构的骨架,然后再溶解脱除模板剂是获得高度晶化的多孔TiO2晶体光催化剂的一种有效的合成方法[17]。 另外,我们课题组开发的绿色温和的室温晶化合成法使多孔TiO2晶体光催化剂获得了超大的比表面积(比表面积高达400 m2/g)和丰富的表面活性位点。 以钛乙二醇盐作为前驱体,通过紫外光驱动催化脱除材料中的有机组分,即构筑了具有多孔结构的无定形TiO2(Am-TiO2)[20,21]。 如图1a所示,Am-TiO2经过80~90 d的室温晶化过程即转变为锐钛矿相多孔TiO2(An-TiO2)[23]。 造孔和晶化步骤都非常温和,因此最大程度上保留了材料的孔道结构和大比表面积(如图1b)。 如图1c所示,An-TiO2的光解水产氢活性高达0.56 mmol/(h·g)( λ<400 nm;质量分数1%Pt负载),是商业TiO2纳米粒子(P25)光催化活性的2.4倍。 多孔TiO2的空心球结构在光催化应用中也有重要的优势[9,10],即能通过多重散射增加入射光的传输距离和停留时间,提高光能利用率。 Zhang等[9]利用自组装的软模板法,成功制备了碳氮共掺杂的多孔TiO2空心球光催化剂,其光催化氧化降解苯酚和二氯酚的降解率分别达到92%和90%,且降解速率分别是P25的4倍和2倍。 通过特定的复合和结构设计,构筑多孔TiO2基异质结构也是优化其光催化性能的有效手段[11,24]。 这是由于异质结构能通过界面电场促进光生电子-空穴对的分离,进而延长光生电荷的寿命和提高光催化活性。 Li等[24]通过在富含碳缺陷和表面羟基的 g-C3N4超薄层表面生长TiO2,成功制备了多孔的 g-C3N4/TiO2异质结光催化剂。 在模拟太阳光驱动的光催化降解酸性橙染料的对比研究中发现,虽然纯相 g-C3N4是催化惰性且纯相TiO2的降解率只有17%,但多孔 g-C3N4/TiO2异质结光催化剂在10 min内的降解率高达82%。 另外,从材料应用和加工的角度也可以进行特定的结构设计。 Du等[5]设计的TiO2/石墨烯多孔薄层光催化剂在具有高效催化活性的基础上,其形态上更容易加工和固定在特定的基底上。 Pan等[8]制备的多孔F掺杂TiO2空心微球与P25对比,不仅光催化降解甲基蓝的活性更高,而且微孔滤膜分离回收的损失率是后者的一半。
TiO2具有较宽的带隙(如锐钛矿相TiO2带宽约3.2 eV),其光吸收区间主要集中在紫外光区(仅占太阳光的3%~5%),这大大限制了多孔TiO2对太阳能的利用率和光催化应用[2,25]。 “缺陷自掺杂”近来被认为是一种能够拓宽TiO2光响应区间的有效方法。 TiO2的“缺陷自掺杂”特指的是在TiO2的体相或者表面通过移除或重排钛或氧原子构筑Ti3+或者氧空穴缺陷,以达到调节TiO2原子结构并改变其性质的目标。 Feng课题组[26]首次实现了通过“缺陷自掺杂”的方法将TiO2光催化剂的光响应区间拓展到了可见光区。 一步燃烧法制备的Ti3+自掺杂的TiO2实现了优异的可见光驱动的光催化分解水产氢性能(~50 (mol/(h·g); λ>400 nm;质量分数1%Pt负载)。 这主要是由于自掺杂的Ti3+缺陷在TiO2的能带间引入了中间电子能级,减少了光激发e-跃迁需要吸收的能量。 我们课题组以光驱动合成的无定形多孔TiO2作为前驱体[20,21],热还原制备了顺磁氧空穴自掺杂的多孔TiO2(
二氧化钛(TiO2)对于太阳能的转化和利用形式多样。 TiO2经光激发产生的电子不仅可以直接应用于氧化还原反应和太阳能电池发电,而且能以Ti3+离子的形式存储在材料中,应用于暗反应[28,29]、制造光致变色装置[30,31]等。 然而,传统TiO2的光生电子(e-)存储量是非常有限的,很难实现系统的研究和应用[3,20,25]。 因此,e-存储量的提高是实现其系统研究和应用的重要前提。
我们课题组[20]研究证明,光化学合成的无定形多孔TiO2在空穴牺牲剂体系(如甲醇)中经过紫外光照能在其表面掺杂大量的Ti3+缺陷(图2a为Ti3+缺陷自掺杂以后的颜色变化,图2b为Ti3+的电子自旋共振光谱特征信号),即为e-的存储位点(样品标记为TiO2(e-))。 通过K2Cr2O7氧化e-的定量实验证明,在相同条件下TiO2(e-)中e-存储量约为112 mmol/mol远远超过了P25(如图2c)。 TiO2(e-)能实现高e-存储量,主要归功于光驱动合成的无定形多孔TiO2的超大比表面积提供了丰富的表面缺陷形成位点。 进一步通过原位红外光谱和硝基苯还原定量实验证实,TiO2(e-)存储电子的同时也存储了大量的质子,并且以等比例参与氢化还原反应[21],实验验证了Schrauben等[32]提出的TiO2是“proton-coupled electron transfer(PCET)”媒介的观点。 研究证明,TiO2(e-)在室温条件下能快速(<10 s)且选择性地将芳香硝基还原为芳香胺基[21],且e-耗尽后能再次存储。 另外,多孔TiO2存储的e-也能应用于优化材料的室温晶化合成[33]。 在室温晶化过程中,存储的e-不仅加速脱除多孔TiO2中残留的有机物(对室温晶化过程有抑制作用),而且促进了TiO6八面体结构单元的重排。 因此,多孔TiO2的室温晶化时间从80 d缩短到了2 d,TiO2晶体的比表面积(高达736 m2/g)、结晶度以及光催化分解水产氢活性(~4.4 mmol/(h·g); λ<400 nm;质量分数1%Pt负载)也大大提高了。
多孔TiO2的微结构与其e-存储性能密切相关。 我们课题组[21]通过在钛乙二醇盐前驱体中引入钒离子,经过光驱动合成法成功制备了钒离子掺杂的多孔TiO2(V-TiO2(e-))。 硝基苯还原定量实验证实,V-TiO2(e-)的e-存储量是TiO2(e-)的约2.5倍,这主要归功于钒离子掺杂对多孔TiO2的微结构的调控作用。 钒离子掺杂后,多孔TiO2的形貌从原来的棒状变成了板装。 XRD表征结果显示,钛乙二醇盐前驱体晶体材料中掺杂的钒离子,抑制了沿着 c轴方向的(200)晶面的生长。 结构上的变化导致了多孔二氧化钛表面暴露了更多的Ti3+缺陷的构筑位点,这与XPS的表征结果相一致,即以Ti-O-Ti成键形式的Ti原子(Ti3+缺陷构筑位点或e-存储位点)比例明显增加了。 另外,氮气吸附-脱附表征结果显示,钒离子掺杂使多孔TiO2的孔道尺寸变大了。 较大的孔道能在e-存储过程中提供更开阔的传质通道。 因此,钒离子掺杂通过调节多孔TiO2的微结构显著提高了其e-存储性能。
气敏性能在安全和环境领域有重要的应用价值,因此得到了广泛的研究和关注。 在众多的半导体气敏材料中,二氧化钛(TiO2)稳定、无毒、低成本且生物相容性好,是近年来研究和应用的重点。 TiO2的气敏机制是通过与材料表面的气体(氧气/目标气体)发生氧化还原反应,导致自身电阻率发生变化。 多孔TiO2的结构特征在气敏反应过程中显示了重要的优势。
通过特定的结构设计,能有效地优化多孔TiO2气敏材料的性能。 结构设计主要考虑对气体传输和表面性质的影响。 Yang等[4]通过一步水热合成法,成功制备了由TiO2纳米单晶(选择性地暴露高能{001}晶面)自组装的空心微球(THS001)。 一方面,这种空心微球的结构特征实现了更开阔的气体传输和更丰富的表面活性位点;另一方面,第一性原理计算和实验均证明高能{001}晶面对于丙酮(CH3COCH3)和氧均具有更强的吸附能力。 因此,THS001实现了对CH3COCH3气体优异的气敏性能:对于体积分数为(10~200)×10-6范围不同浓度的CH3COCH3气体表现了梯度且快速(<10 s)的气敏响应,并实现了对CH3COCH3气体的气敏选择性(与对C2H5OH、H2、NH3和H2S气体的气敏响应对比)。 另外,晶粒密度也会影响到晶界的电荷传输,进而影响多孔TiO2气敏材料的性能。 Seo等[6]通过水热方法合成了TiO2纳米管组成的多孔薄层气敏材料。 多孔薄层具有丰富的表面活性位点和气体传输通道,是非常优势的气敏材料,其成功构筑主要得益于TiO2纳米管的一维生长取向。 值得注意的是,该研究中通过简单的球磨处理过程(3 h)能够显著提高多孔TiO2薄层的气敏性能。 这主要是由于3 h球磨过程能在保留薄层多孔性的基础上,增大晶粒密度、促进晶界电子传输、进而提高气敏响应(提高至2倍,体积分数为50×10-6甲苯,500 ℃)。 近来,有越来越多的研究成果证明p-n异质结构也能够显著影响气敏材料的性能[7,34]。 这主要是由于异质结界面的电荷传输进一步降低了给电子型气体吸附的活化能,进而进一步促进了对该类气体的吸附和气敏响应。
表面化学研究发现,TiO2的体相还原态能够影响其表面的氧吸附能力[25,36]。 我们课题组以光驱动合成法制备的无定形多孔TiO2作为前驱体,开发了一系列体相还原态多孔TiO2气敏材料,并系统地研究了体相缺陷对表面氧吸附能力和气敏性能的影响。 咪唑盐酸热还原法制备的氧空穴和Ti3+离子共掺杂的多孔TiO2(
多孔TiO2的结构特征在一些涉及异相反应的功能应用中极具优势。 本文重点介绍了多孔TiO2在光催化、光生电子(e-)存储和气敏领域的研究进展,并从结构和缺陷设计角度总结和讨论了其性能调控策略。
多孔TiO2光催化剂的应用局限主要在于光能利用率不够高,其性能调控和优化需要综合考虑光能吸收、电荷分离/传输、以及氧化还原反应等多方面的影响因素。 其中,减少光生电荷复合中心的引入是光催化性能调控的关键。 光驱动合成法制备的无定形多孔TiO2成功实现了对光生电子(e-)的大量存储,这是系统研究和应用e-存储性能的重要突破。 多孔TiO2的e-存储性能在绿色化学合成和先进功能材料开发中展现了重要的研究价值和应用潜力。 多孔TiO2的气敏性能非常依赖于材料的表面性质,如气体吸附能力、氧化还原反应活性等。 然而,其气敏性能的调控不能局限于表面设计或改性,综合考虑体相和表面结构和性质的影响才能最大程度地优化性能和满足应用。
本综述中关于多孔TiO2的性能调控方案(包括结构和缺陷设计)不局限于上述性能,在其它多功能应用研究中均可作为参考。
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|