《纳米材料在新能源领域的应用》专辑序言——纳米材料:未来绿色可再生能源的最大希望
郭林
北京航空航天大学化学与环境学院 北京 100191
中图分类号:O611 文献标志码:A 文章编号:1000-0518(2018)08-0857-02
Preface of Special Issue:Nanomaterials for Energy-related Applications——Future Green Renewable Energy Resources
GUO Lin
School of Chemistry and Environment,Beihang University,Beijing 100191,China
客座编辑,教授; Tel:010-82338162; E-mail:guolin@buaa.edu.cn; 研究方向:无机纳米材料

日趋严重的能源短缺和环境污染问题,促使我们积极地探索用清洁的新能源来取代传统的化石能源。 纳米材料的迅速发展为能源转换和利用开辟了一条崭新的途径。 通过对纳米材料的形貌、尺寸、结构以及表面功能化基团的精细调控,开发出了多种多样的纳米功能材料,这些材料在新能源转换、存贮和开发方面具有广阔的应用前景。

首先,纳米材料可以提供巨大的比表面积,增加固-液界面间的分子吸附,从而大大加快电化学或光电化学反应速度;其次,微观调控纳米半导体材料的带隙宽度,可以大幅度提高太阳能电池的光吸收效率。 另外,纳米多孔结构可以帮助电子、离子在材料内部转移和扩散,从而保证高效的电化学和光电化学反应的发生。 正是由于纳米材料的这些特殊性质,使其广泛地应用于新能源材料领域,如太阳能电池、光电催化、锂离子电池、储氢材料等。

太阳能电池是一种新型的清洁能源转换装置,可以将太阳能直接转换成电能。目前新型的太阳能电池包括:染料敏化太阳能电池,有机太阳能电池,量子点太阳能电池及钙钛矿太阳能电池等。 光电催化反应是指光照在半导体表面,产生光生电子和空穴,分离后与溶液中离子进行的氧化还原反应。 光电催化最常见的应用是纳米材料光电解水,产生氢气和氧气。 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。 锂离子电池具有能量密度高、使用寿命长、绿色环保等优点。 目前,最具潜力的锂电材料有石墨烯、碳纳米管、碳硅复合纳米材料和钛酸锂等。

本专辑围绕纳米材料在新能源材料领域应用专题,收录了在相关领域具有丰富积累和影响的团队所撰写的14篇相关研究进展的综述文章、研究论文和简报,部分反映了我国在太阳能电池结构设计、半导体纳米材料光电催化、新型锂离子电极材料等方面的研究进展。 希望借助该专刊的出版,能使广大读者更深入地了解我国在纳米材料新能源领域的研究趋势和面临的挑战,进而推动新能源材料研究的进一步发展。

在此,对本专辑的所有作者、审稿人及编辑部工作人员卓有成效的工作和付出表示衷心感谢!

An ever growing demand for energy coupled with increasing pollution is forcing us to seek environmentally clean energy resources to substitute fossil fuels. The rapid development of nanomaterials has opened up new avenues for the conversion and utilization of renewable energy. By tailoring the morphology, size, structure, and surface functional groups of nanomaterials, we can develop various nanomaterials for wide applications in energy conversion, storage, and generation.

First, nanomaterials can provide a large surface area, increase molecular adsorption occurring at the solid-liquid interface to boost the electrochemical reaction. Next, by tailoring the band gap width of nanomaterials, the optical absorption efficiency can be greatly improved in solar cells. Third, nanomaterials can give rise to porous structure to facilitate the electron transport and ion diffusion, so as to ensure the electrochemical or photo-electrochemical process occurs with high efficiency. Due to their special properties, nanomaterials have been widely applied for energy-related areas such as solar cells, electrocatalysts, photo-electrocatalysts, lithium ion batteries, and hydrogen storage systems. Solar cell is a novel clean energy conversion device to convert solar energy to electrical power. Nowadays, the novel photovoltaic systems include dye-sensitized solar cells, organic solar cells, quantum dot solar cells, and perovskite solar cells. Photo-electrocatalytic reaction involves the generation of hole-electron pairs by light illumination, separation of photo-generated electrons and holes, and redox reactions with ions in the electrolyte. The general application of photo-electrocatalytic reaction is the photo-electrocatalytic water splitting to generate hydrogen and oxygen. Li-ion battery is a type of rechargeable battery in which lithium ions move from the negative electrode to the positive electrode. The most potential electrode materials are graphene, carbon nanotubes, silicon/carbon composite, lithium titanate, etc. In this special issue, we collect 14 contribuions including review and research articles and communication from some domestic leading research groups in nanomaterials for energy-related applications to attract more researchers to focus their studies on this blooming field. Toward this end, I greatly appreciate the outstanding contribution of all authors, reviewers, as well as the strenuous efforts from the editorial stuffs.