Processing math: 100%
无催化剂、三组分一锅法合成2-氨基-3-氰基-4 H-吡喃类化合物
吕乐a, 毛胜雪a, 李非a, 朱小磊b, 吕成伟a,*
a辽宁师范大学 辽宁 大连 116029
b鞍山市教师进修学院 辽宁 鞍山 114000
通讯联系人:吕成伟,讲师; Tel:0411-82158329; E-mail:chengweilv@126.com; 研究方向:绿色有机合成及有机催化反应
摘要

4- H-吡喃类化合物在医药、化工、有机合成等方面应用广泛,因此,发展其有效的合成方法具有重要意义。 本文主要研究无催化剂条件下,以水作为反应介质,乙醇作为辅助溶剂,促进芳香醛、丙二腈与多种1,3-二羰基化合物的三组分“一锅法”缩合反应,高产率地合成了3种超过50个2-氨基-3-氰基-4 H-吡喃类化合物并进行了系统的结构表征。 该方法具有反应条件温和、不使用催化剂、底物适用性广、反应和后处理过程简单以及环境友好等优点。

关键词: 多组分反应; 无催化剂; ; 4 H-吡喃; 绿色合成
中图分类号:O621 文献标志码:A 文章编号:1000-0518(2018)05-0518-08
Efficient Synthesis of 2-Amino-3-cyano-4 H-pyran Derivatives via Catalyst-Free One-Pot Tri-Component Reaction
LÜ Yuea, MAO Shengxuea, LI Feia, ZHU Xiaoleib, LÜ Chengweia
aCollege of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian,Liaoning 116029,China
bTeachers Training College of Anshan,Anshan,Liaoning 114000,China
Corresponding author:LYU Chengwei, lecturer; Tel:0411-82158329; E-mail:chengweilv@126.com; Research interests:green organic synthesis and catalysis
Abstract

4 H-Pyrans and 4 H-pyran-annulated heterocyclic scaffolds are the key building blocks of numerous natural products and represent a “drug-like” structural motif with a broad spectrum of applications in organic synthesis and medicinal chemistry. In this paper, a convenient one-pot three-component strategy was conducted successfully under catalyst-free condition employing water as reaction medium and ethanol as co-solvent. Three kinds, over fifty 2-amino-3-cyano-4 H-pyran derivatives were synthesized in good to excellent yields by the condensation of a series of aromatic aldehydes with malononitrile and different 1,3-dicarbonyl compounds. Broad substrate scope, systematic characterization, eliminated catalyst, mild reaction condition, simple purification procedure are the best advantages in this methodology.

Keyword: multi-component reaction; catalyst-free; water; 4 H-pyran derivatives; green synthesis

4 H-吡喃及其衍生物是一类重要的杂环化合物,其结构是多种天然产物的核心骨架[1,2,3,4]。 它们具有多种药理活性和生物活性,如抗肿瘤、抗细胞毒性、抗阿尔茨海默病、抗白血病和抗菌等,被广泛用于医药和农药领域[5,6,7,8,9,10,11,12,13]。 因此,该类化合物合成方法的研究越来越受到重视。 目前,2-氨基-3-氰基-4 H-吡喃类化合物主要是由醛、丙二腈与不同的1,3-二羰基化合物通过“一锅法”反应合成得到。 已经发展了多种催化体系促进反应进行,如:碳基固体酸(CBSA)[14]H6P2W18O62·18H2O[15]、四丁基溴化铵(TBAB)[16](CH2)6N4[17]、1,8-二氮杂二环十一碳-7-烯(DBU)[18]、离子液体[19]、十二烷基硫酸钠(SDS)[20]、乳糖[21]、MgO[22]、聚(4-乙烯基吡啶)-CuI纳米粒子(P4VPy-CuI)[23]、纳米Fe3 O4[24]、天冬氨酸[25]、果胶[26]、盐酸硫胺素(VB1)[27]、苄基三乙基氯化铵(TEBA)[28]、二氧化硅负载 N-丙基-咪唑鎓盐 ([Sipim]HSO4)[29]等。 但寻找更加高效、简单、低成本、环境友好的绿色合成方法仍是亟待解决的重要问题[18,30,31,32,33,34]

绿色化学是当今化学学科研究的前沿[35,36],发展环境友好的合成方法已经成为当今有机化学研究领域的重要目标之一[37]。 溶剂在有机反应过程中扮演着至关重要的角色,溶剂的绿色化[38,39,40,41,42]和发展无催化剂的反应[43,44,45,46]是解决环境污染的有效途径。 甘油作为绿色反应介质已经成功地应用于促进无催化剂的多组分反应合成4 H-吡喃类化合物[47]。 与甘油相比,水更加绿色环保、价格低廉,已经广泛用作有机反应的反应介质[46,48,49]。 根据文献报道[50,51,52]和我们实验室的经验,水可以促进醛与1,3-二羰基化合物的缩合反应。 因此,我们推测在无催化剂的条件下,水能够促进醛、丙二腈与1,3-二羰基化合物的三组分反应合成2-氨基-3-氰基-4 H-吡喃类衍生物。 基于上述考虑,本文重点研究在无催化剂的条件下、水相中醛、丙二腈和双甲酮/1,3-环己二酮/4-羟基香豆素之间的三组分缩合反应合成4 H-吡喃类化合物,路线如Scheme 1所示。

Scheme 1 Synthetic routes toward 2-amino-3-cyano-4 H-pyran annulated derivatives

1 实验部分
1.1 仪器和试剂

X-5型数字熔点仪(温度未经校正) (北京泰克仪器有限公司);Bruker TENSOR 27型红外光谱仪(IR,德国Bruker公司);Bruker Avance 500 MHz型核磁共振仪(NMR,德国Bruker公司);Agilent G6224A TOF型高分辨质谱仪(美国Agilent公司)。

脂肪醛、芳香醛及其它取代的芳香醛均为分析纯试剂,购自阿拉丁试剂有限公司(上海)或萨恩化学技术有限公司(上海);双甲酮、1,3-环己二酮均购自萨恩化学技术有限公司(上海);丙二腈、4-羟基香豆素均购自阿拉丁试剂有限公司(上海)。

1.2 实验方法

1.2.1 目标化合物4a~4s和5a~5q的合成

向10 mL耐压管中加入0.5 mmol醛、0.5 mmol丙二腈、0.55 mmol双甲酮/1,3-环已二酮、1 mL水和1 mL乙醇,30 ℃下搅拌3.5 h。 反应结束后向体系中加入适量乙醇和水的混合液,100 ℃,快速搅拌10 min,除去杂质。 充分冷却后抽滤,用适量冷的20%乙醇淋洗。 大部分产物无需额外的提纯操作即可得到纯净的化合物,结构经IR、1H NMR和13C NMR等测定,具体数据见辅助材料。

1.2.2 目标化合物6a~6q的合成

向10 mL耐压瓶中加入0.5 mmol醛、0.5 mmol丙二腈、0.55 mmol 4-羟基香豆素,1 mL水和乙醇的混合液(体积比2:1),100 ℃,搅拌4 h。 反应结束后向体系中加入适量乙醇和水的混合液,100 ℃下,搅拌10 min,除去杂质。 充分冷却后抽滤,用适量冷的体积分数为20%乙醇淋洗。 大部分产物不需要再进行额外的提纯操作就可以得到纯净的化合物,结构经IR、1H NMR和13C NMR等测定,具体数据见辅助材料。

2 结果与讨论
2.1 反应条件筛选

以0.5 mmol的苯甲醛、丙二腈和双甲酮的三组分反应为模型,在不添加其他催化剂的条件下考察不同因素对反应的影响,结果见表1。 与我们推测的一致,水可以促进该反应进行,并获得不错的产率。 以水和乙醇的组合同样具有安全有效、价廉无毒、环境友好等优点,已被广泛地应用于合成各类重要的有机化合物[53,54,55,56,57]。 实验结果证明,在水中加入乙醇作为辅助溶剂可以很大地提高本反应的产率(表1,Entry 3),明显高于单独使用水或乙醇作为溶剂的情况(表1,Entries 1~2)。 添加甲醇、异丙醇、甘油虽然也可以改善反应的结果(表1,Entries 4~6),但加入乙醇效果最好。 探究二者的比例和用量表明水和乙醇的体积比为1:1、总量2 mL时产率最高达到93%(表1,Entry 9)。 接下来考察了物料比对反应的影响(表1,Entries 11~13),结果表明苯甲醛、丙二腈、双甲酮的体积比为1:1:1.1时反应效果最好。 最后,考察了反应温度和时间对产率的影响(表1,Entries 14,15),室温条件下反应2.5 h的效果最好。 综上所述,最佳的反应条件为室温、无催化剂条件下,以2 mL体积比为1:1水和乙醇的混合液为反应介质,苯甲醛、丙二腈、双甲酮的摩尔比为1:1:1.1,反应2.5 h。

表1 反应条件筛选 Table 1 Screening of reaction conditions
2.2 反应对不同底物的普适性

在最佳反应条件下,系统的考察了丙二腈、双甲酮与多种芳香醛的三组分缩合反应。 因为部分取代的苯甲醛受电子效应和空间效应的影响反应活性降低,所以统一延长反应时间到3.5 h,提高温度到30 ℃。 由表2可以看出,大多数芳香醛均能够顺利地进行反应,并得到较高收率的产物,但整体结果均比苯甲醛差。 当苯环上连有弱吸电子取代基时反应活性高于苯环上连有强吸电子基团或供电子基团的反应活性(表2,Entries 2~16)。 而空间效应对反应结果的影响并不十分明显。 另外,糠醛在该反应中也表现出较高的活性(表2,Entry 17)。 与芳香醛相比,脂肪醛的反应活性较低,其中异丁醛的反应活性优于正丁醛(表2,Entries 18~19)。

表2 化合物4的底物扩展 Table 2 Substrate scope for the synthesis of product 4

在相同的反应条件下,我们使用1,3-环己二酮代替双甲酮与丙二腈和不同的芳香醛进行三组分一锅法反应,扩展反应的适用范围。 由表3的结果可知,1,3-环己二酮的反应活性弱于双甲酮。 芳香醛苯环上取代基的电子效应对反应的影响与上面的反应相同。 弱吸电子基团取代的苯甲醛反应活性高于苯环上连有强吸电子取代基或供电子取代基的苯甲醛(表3,Entries 2~16)。 芳香醛苯环上取代基的空间效应对反应的影响较为明显,邻位取代苯甲醛的反应活性略低于间位或对位取代的苯甲醛。 另外,脂肪醛在反应体系中的反应活性很低,几乎不反应。

表3 化合物5的底物扩展 Table 3 Substrate scope for the synthesis of product 5

为了进一步扩大本方法的底物适用范围,我们还研究了4-羟基香豆素、丙二腈和不同芳香醛的反应。 由于4-羟基香豆素的反应活性较差,相应地对反应过程中溶剂比例、溶剂用量、反应温度、反应时间进行了调整。 使用1 mL水和乙醇为溶剂(体积比2:1),在100 ℃下反应4 h。 如表4所示,4-羟基香豆素作为底物能够顺利地与丙二腈和芳香醛反应。 芳环上的取代基的电子效应对醛的反应活性影响较小,而空间效应的影响明显,邻位取代苯甲醛的反应活性低于间位或对位取代的苯甲醛。 脂肪醛该反应条件下反应活性较高,尤其是异丁醛,得到了81%的产率(表4,Entry 17)。

表4 化合物6的底物扩展 Table 4 Substrate scope for the synthesis of product 6
3 结 论

本文实现了乙醇作为辅助溶剂,水促进的芳香醛、丙二腈与双甲酮/1,3-环己二酮/4-羟基香豆素的3组分缩合反应,有效地合成了3种超过50个2-氨基-3-氰基-4 H-吡喃类衍生物。 此方法不使用催化剂,也无需要大量使用有机溶剂,反应结束后无需复杂的后处理过程就可以高产率地获得纯净的目标产物,操作简便、环境友好。

辅助材料(Supporting Information)[化合物4a~4s、5a~5q、6a~6q的IR、1H NMR、13C NMR数据及谱图]可以免费从本刊网站(http://yyhx.ciac.jl.cn/)下载。

参考文献
[1] Dekamin M G, Eslami M, Maleki A. Potassium Phthalimide-N-Oxyl: A Novel, Efficient, and Simple Organocatalyst for the One-pot Three-component Synthesis of Various 2-Amino-4 H-Chromene Derivatives in Water[J]. Tetrahedron, 2013, 69(3): 1074-1085. [本文引用:1]
[2] Karami B, Kiani M. Silica-Supported Molybdic Acid: Preparation, Characterization, and Its Catalytic Application in Synthesis of Pyranocoumarins[J]. Monatsh Chem, 2016, 147(6): 1117-1124. [本文引用:1]
[3] Zolfigol M A, Safaiee M, Bahrami-Nejad N. Dendrimeric Magnetic Nanoparticle Cores with Co-phthalocyanine Tags and Their Application in the Synthesis of Tetrahydrobenzo[b]pyran Derivatives[J]. New J Chem, 2016, 40(6): 5071-5079. [本文引用:1]
[4] Bolognese A, Correale G, Manfra M, et al. Antitumor Agents. 3. Design, Synthesis, and Biological Evaluation of New Pyridoisoquinolindione and Dihydrothienoquinolindione Derivatives with Potent Cytotoxic Activity[J]. J Med Chem, 2004, 47(4): 849-858. [本文引用:1]
[5] Magar R L, Thorat P B, Jadhav V B, , et al. Silica Gel Supported Polyamine: A Versatile Catalyst for One Pot Synthesis of 2-Amino-4 H-Chromene Derivatives[J]. J Mol Catal A Chem. , 2013, 374/375: 118-124. [本文引用:1]
[6] Tabassum S, Govindaraju S, Pasha M A. Ultrasound Mediated, Iodine Catalyzed Green Synthesis of Novel 2-Amino-3-Cyano-4 H-Pyran Derivatives[J]. Ultrason Sonochem, 2015, 24: 1-7. [本文引用:1]
[7] Bora P P, Bihani M, Bez G. Beyond Enzymatic Promiscuity: Asymmetric Induction by L-Proline on Lipase Catalyzed Synthesis of Polyfunctionalized 4 H-Pyrans[J]. RSC Adv, 2015, 5(62): 50597-50603. [本文引用:1]
[8] Zolfigol M A, Yarie M, Baghery S. Application of {[4, 4'-BPyH][C(CN)3]2} as a Bifunctional Nanostructured Molten Salt Catalyst for the Preparation of 2-Amino-4 H-Chromene Derivatives under Solvent-free and Benign Conditions[J]. Synlett, 2016, 27(9): 1418-1422. [本文引用:1]
[9] Kiyani H, Jalali M S. Facile and Efficient Access to Tetrahydrobenzo[b]pyrans Catalyzed by N, N-Dimethylbenzylamine[J]. Heterocycles, 2016, 92(1): 75-85. [本文引用:1]
[10] Abbaspour-Gilandeh E, Aghaei-Hashjin M, Yahyazadeh A, et al. (CTA)3[SiW12]-Li+-MMT: A Novel, Efficient and Simple Nanocatalyst for Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-4 H-Chromene Derivatives via an Eco-Friendly Multicomponent Reaction in Water[J]. RSC Adv, 2016, 6(60): 55444-55462. [本文引用:1]
[11] Bayer T A, Schäfer S, Breyhan H, et al. A Vicious Circle: Role of Oxidative Stress, Intraneuronal a Beta and Cu in Alzheimer's Disease[J]. Clin Neuropath, 2006, 25(4): 163-171. [本文引用:1]
[12] Beagley P, Blackie M A L, Chibale K, et al. Synthesis and Antiplasmodial Activity in Vitro of New Ferrocene-Chloroquine Analogues[J]. Dalton Trans, 2003, (15): 3046-3051. [本文引用:1]
[13] Kumar D, Reddy V B, Sharad S, et al. A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4 H-Pyrans and 2-Amino-5-Oxo-5, 6, 7, 8-Tetrahydro-4 H-Chromenes[J]. Eur J Med Chem, 2009, 44(9): 3805-3809. [本文引用:1]
[14] Moghaddas M, Davoodnia A. Atom-Economy Click Synthesis of Tetrahydrobenzo[b]pyrans Using Cabon-Based Solid Acid as a Novel, Highly Efficient and Reusable Heterogeneous Catalyst[J]. Res Chem Intermed, 2015, 41(7): 4373-4386. [本文引用:1]
[15] Heravi M M, Jani B A, Derikvand F, et al. Three Component, One-Pot Synthesis of Dihydropyrano[3, 2-c]chromene Derivatives in the Presence of H6P2W18O62·18H2O as a Green and Recyclable Catalyst[J]. Catal Commun, 2008, 10(3): 272-275. [本文引用:1]
[16] Khurana J M, Kumar S. Tetrabutylammonium Bromide(TBAB): A Neutral and Efficient Catalyst for the Synthesis of Biscoumarin and 3, 4-Dihydropyrano[c]chromene Derivatives in Water and Solvent-free Conditions[J]. Tetrahedron Lett, 2009, 50(28): 4125-4127. [本文引用:1]
[17] Wang H J, Lu J, Zhang Z H. Highly Efficient Three-Component, One-Pot Synthesis of Dihydropyrano[3, 2-c]chromene Derivatives[J]. Monatsh Chem, 2010, 141(10): 1107-1112. [本文引用:1]
[18] Khurana J M, Nand B, Saluja P. DBU: A Highly Efficient Catalyst for One-Pot Synthesis of Substituted 3, 4-Dihydropyrano[3, 2-c]chromenes, Dihydropyrano[4, 3-b]pyranes, 2-Amino-4 H-Benzo[h]chromenes and 2-Amino-4 H-Benzo[g]chromenes in Aqueous Medium[J]. Tetrahedron, 2010, 66(30): 5637-5641. [本文引用:2]
[19] Banerjee S. The Remarkable Catalytic Activity of Ultra-Small Free-CeO2 Nanoparticles in Selective Carbon-Carbon Bond Formation Reactions in Water at Room Temperature[J]. New J Chem, 2015, 39(7): 5350-5353. [本文引用:1]
[20] Venkatesan K, Pujari S S, Srinivasan K V. Proline-Catalyzed Simple and Efficient Synthesis of 1, 8-Dioxo-decahydroacridines in Aqueous Ethanol Medium[J]. Synth Commun, 2009, 39(2): 228-241. [本文引用:1]
[21] Sadeh F N, Maghsoodlou M T, Hazeri N, et al. A Facile and Efficient Synthesis of Tetrahydrobenzo[b]pyrans Using Lactose as a Green Catalyst[J]. Res Chem Intermed, 2015, 41(8): 5907-5914. [本文引用:1]
[22] Seifi M, Sheibani H. High Surface Area Mgo as a Highly Effective Heterogeneous Base Catalyst for Three-Component Synthesis of Tetrahydrobenzopyran and 3, 4-DihydRopyrano[c]chromene Derivatives in Aqueous Media[J]. Catal Lett, 2008, 126(3): 275-279. [本文引用:1]
[23] Albadi J, Mansournezhad A. Aqua-Mediated Multicomponent Synthesis of Various 4 H-Pyran Derivatives Catalyzed by Poly-(4-Vinylpyridine)-Supported Copper Iodide Nanoparticle Catalyst[J]. Res Chem Intermed, 2016, 42(6): 5739-5752. [本文引用:1]
[24] Amirheidari B, Seifi M, Abaszadeh M. Evaluation of Magnetically Recyclable Nano-Fe3O4 as a Green Catalyst for the Synthesis of Mono- and Bis-tetrahydro-4 H-chromene and Mono and Bis 1, 4-Dihydropyridine Derivatives[J]. Res Chem Intermed, 2016, 42(4): 3413-3423. [本文引用:1]
[25] Ahad A, Farooqui M. Organocatalyzed Domino Reactions: Diversity Oriented Synthesis of Pyran-Annulated Scaffolds Using in Situ-developed Benzylidenemalononitries[J]. Res Chem Intermed, 2017, 43(4): 2445-2455. [本文引用:1]
[26] Kangani M, Hazeri N, Maghsoodlou M T. A Mild and Environmentally Benign Synthesis of Tetrahydrobenzo[b]pyrans and Pyrano[c]chromenes Using Pectin as a Green and Biodegrandable Catalyst[J]. J Chinese Chem Soc, 2016, 63(11): 896-901. [本文引用:1]
[27] Chen L, Bao S, Yang L, et al. Cheap Thiamine Hydrochloride as Efficient Catalyst for Synthesis of 4 H-Benzo[b]pyrans in Aqueous Ethanol[J]. Res Chem Intermed, 2017, 43(7): 3883-3891. [本文引用:1]
[28] SHI Daqing, WANG Jing, ZHUANG Qiya, et al. Three-Component One-Pot Synthesis of 1, 6-Dioxa-5-oxo-1, 4, 5, 6-tetrahydrophenanthrene Derivatives in Aqueous Media[J]. J Chinese Chem Soc, 2006, 26(5): 643-647(in Chinese).
史达清, 王静, 庄启亚, . 水介质中1, 6-二氧-5-氧代-1, 4, 5, 6-四氢化菲衍生物的三组分一锅合成[J]. 有机化学, 2006, 26(5): 643-647. [本文引用:1]
[29] Niknam K, Piran A. Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3, 4-Dihydropyrano[c]chromenes and Pyrano[2, 3-c]pyrazoles[J]. Green Sustainable Chem, 2013, 3(2): 1-8. [本文引用:1]
[30] Pore D M, Undale K A, Dongare B B, et al. Potassium Phosphate Catalyzed a Rapid Three-component Synthesis of Tetrahydrobenzo[b]pyran at Ambient Temperature[J]. Catal Lett, 2009, 132(1): 104-108. [本文引用:1]
[31] Hasaninejad A, Shekouhy M, Golzar N, et al. Silica Bonded N-Propyl-4-Aza-1-Azoniabicyclo[2. 2. 2]octane Chloride(SB-DABCO): A Highly Efficient, Reusable and New Heterogeneous Catalyst for the Synthesis of 4 H-Benzo[b]pyran Derivatives[J]. Appl Catal A-Gen, 2011, 402(1): 11-22. [本文引用:1]
[32] Ren Y, Zhang W, Lu J, et al. One-Pot Synthesis of Tetrahydro-4 H-Chromenes by Supramolecular Catalysis in Water[J]. RSC Adv, 2015, 5(97): 79405-79412. [本文引用:1]
[33] Rajput J K, Arora P, Kaur G, et al. CuFe2O4 Magnetic Heterogeneous Nanocatalyst: Low Power Sonochemical-Coprecipitation Preparation and Applications in Synthesis of 4 H-Chromene-3-Carbonitrile Scaffolds[J]. Ultrason Sonochem, 2015, 26: 229-240. [本文引用:1]
[34] Shirini F, Goli-Jolodar O, Akbari M, et al. Preparation, Characterization, and Use of Poly(Vinylpyrrolidonium) Hydrogen Phosphate([PVP-H]H2PO4) as a New Heterogeneous Catalyst for Efficient Synthesis of 2-Amino-Tetrahydro-4 H-Pyrans[J]. Res Chem Intermed, 2016, 42(5): 4733-4749. [本文引用:1]
[35] Gu Y. Multicomponent Reactions in Unconventional Solvents: State of the Art[J]. Green Chem, 2012, 14(8): 2091-2128. [本文引用:1]
[36] Bodaghifard M A, Solimannejad M, Asadbegi S. Mild and Green Synthesis of Tetrahydrobenzopyran, Pyranopyrimidinone and Polyhydroquinoline Derivatives and DFT Study on Product Structures[J]. Res Chem Intermed, 2016, 42(2): 1165-1179. [本文引用:1]
[37] Dömling A, Wang W, Wang K. Chemistry and Biology of Multicomponent Reactions[J]. Chem Rev, 2012, 112(6): 3083-3135. [本文引用:1]
[38] XIONG Xinquan, HAN Qian, SHI Lin, et al. Application of Deep-Eutectic Solvents in Green Organic Synthesis[J]. Chinese J Org Chem, 2015, 36(3): 480-489(in Chinese).
熊兴泉, 韩骞, 石霖, . 低共熔溶剂在绿色有机合成中的应用[J]. 有机化学, 2015, 36(3): 480-489. [本文引用:1]
[39] WEI Li, CHEN Xuwen, LIU Yunyun, et al. Recent Advances in Organic Synthesis Employing Ethyl Lactate as Green Reaction Medium[J]. Chinese J Org Chem, 2016, 36(5): 954-961(in Chinese).
韦丽, 陈绪文, 刘云云, . 绿色反应介质乳酸乙酯在有机合成中的应用研究进展[J]. 有机化学, 2016, 36(5): 954-961. [本文引用:1]
[40] Zhang Q, Vigier K D O, Royer S, et al. Deep Eutectic Solvents: Syntheses, Properties and Applications[J]. Chem Soc Rev, 2012, 41(21): 7108-7146. [本文引用:1]
[41] Solhy A, Elmakssoudi A, Tahir R, et al. Clean Chemical Synthesis of 2-Amino-Chromenes in Water Catalyzed by Nanostructured Diphosphate Na2CaP2O7[J]. Green Chem, 2010, 12(12): 2261-2267. [本文引用:1]
[42] Dekamin M G, Eslami M. Highly Efficient Organocatalytic Synthesis of Diverse and Densely Functionalized 2-Amino-3-Cyano-4 H-Pyrans under Mechanochemical Ball Milling[J]. Green Chem, 2014, 16(12): 4914-4921. [本文引用:1]
[43] Liu J, Lei M, Hu L. A Catalyst-free Reaction in Water: Synthesis of Benzo[4, 5]imidazo[1, 2-a]pyrimido[4, 5-d]pyrimidin-4(1 H)-One Derivatives[J]. Green Chem, 2012, 14(9): 2534-2539. [本文引用:1]
[44] Yang H, Hu W, Deng S, et al. Catalyst-Free Amidation of Aldehyde with Amine under Mild Conditions[J]. New J Chem, 2015, 39(8): 5912-5915. [本文引用:1]
[45] Alonso D A, Baeza A, Chinchilla R, et al. Deep Eutectic Solvents: The Organic Reaction Medium of the Century[J]. Eur J Org Chem, 2016, 2016(4): 612-632. [本文引用:1]
[46] Gawande M B, Bonif Cio V D B, Luque R, et al. Benign by Design: Catalyst-Free In-Water, On-Water Green Chemical Methodologies in Organic Synthesis[J]. Chem Soc Rev, 2013, 42(12): 5522-5551. [本文引用:2]
[47] Safaei H R, Shekouhy M, Rahmanpur S, et al. Glycerol as a Biodegradable and Reusable Promoting Medium for the Catalyst-Free One-Pot Three Component Synthesis of 4 H-Pyrans[J]. Green Chem, 2012, 14(6): 1696-1704. [本文引用:1]
[48] WANG Xicun, ZHANG Zhang, QUAN Zhengjun, et al. Synthesis of N-Aryl- N'-(2-Benzofuroyl)thioureas and 1-Aroyl-4-(2'-Benzofuroyl)thiosemicarbazides in Aqueous Media[J]. Chinese J Org Chem, 2006, 26(7): 967-970(in Chinese).
王喜存, 张彰, 权正军, . 水介质中 N-芳基 -N'-(2-苯并呋喃甲酰基)硫脲及1-芳甲酰基-4-(2'-苯并呋喃甲酰基)氨基硫脲的合成[J]. 有机化学, 2006, 26(7): 967-970. [本文引用:1]
[49] Xiao J, Wen H, Wang L, et al. Catalyst-Free Dehydrative SN1-type Reaction of Indolyl Alcohols with Diverse Nucleophiles “On Water”[J]. Green Chem, 2016, 18(4): 1032-1037. [本文引用:1]
[50] Bigi F, Carloni S, Ferrari L, et al. Clean Synthesis in Water. Part 2: Uncatalysed Condensation Reaction of Meldrum's Acid and Aldehydes[J]. Tetrahedron Lett, 2001, 42(31): 5203-5205. [本文引用:1]
[51] Maggi R, Bigi F, Carloni S, et al. Uncatalysed Reactions in Water: Part 2. Preparation of 3-Carboxycoumarins[J]. Green Chem, 2001, 3(4): 173-174. [本文引用:1]
[52] Jin T S, Wang A Q, Wang X, et al. A Clean One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives Catalyzed by Hexadecyltrimethyl Ammonium Bromide in Aqueous Media[J]. Synlett, 2004, 2004(5): 0871-0873. [本文引用:1]
[53] Patil D, Chandam D, Mulik A, et al. Novel Brønsted Acidic Ionic Liquid ([CMIM][CF3COO]) Prompted Multicomponent Hantzsch Reaction for the Eco-Friendly Synthesis of Acridinediones: An Efficient and Recyclable Catalyst[J]. Catal Lett, 2014, 144(5): 949-958. [本文引用:1]
[54] Brahmachari G, Banerjee B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-Cyano-4 H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst[J]. ACS Sustainable Chem Eng, 2014, 2(3): 411-422. [本文引用:1]
[55] Chandam D R, Mulik A G, Patil P P, et al. (±)-Camphor-10-Sulfonic Acid Catalyzed Atom Efficient and Green Synthesis of Triazolo[1, 2-a]indazole-Triones and Spiro Triazolo[1, 2-a]indazole-Tetraones[J]. Res Chem Intermed, 2015, 41(2): 761-771. [本文引用:1]
[56] Shabalala N, Maddila S, Jonnalagadda S B. Catalyst-Free, One-Pot, Four-Component Green Synthesis of Functionalized 1-(2-Fluorophenyl)-1, 4-Dihydropyridines under Ultrasound Irradiation[J]. New J Chem, 2016, 40(6): 5107-5112. [本文引用:1]
[57] Adib M, Yasaei Z, Mirzaei P. A One-pot, Multicomponent Synthesis of 5'-Amino-2, 2'-dioxospiro[indoline-3, 3'-pyrrole]-4'-carbonitriles[J]. Synlett, 2016, 27(3): 383-386. [本文引用:1]