Two-dimensional(2D) nanomaterials possess sheet-like structures with the thickness of nanoscale, but the lateral size is infinite. In 2004, Andre Geim and co-workers at the University of Manchester successfully exfoliated a sheet of graphene from graphite by the micromechanical cleavage technique, which marked the beginning of 2D nanomaterials. Given the ultrahigh carrier mobility, excellent mechanical property, good thermal stability, superior thermal conductivities and huge specific surface area of graphene, it causes general exploration of other graphene-like 2D nanomaterials.===The 2D feature is unique to access unprecedented physical, chemical, electronic and optical properties. For example, the electron confinement in two dimensions makes them ideal candidates for the fundamental study in condensed matter physics and electronic/optoelectronic devices; the large lateral size endows them with huge surface area and high exposure of active sites. Due to their unique properties, 2D nanomaterials have promising applications in energy storage and conversion, electronic devices, catalytic reaction, sensing and biomedicine. By now, nearly 20 types of 2D nanomaterials have been studied, such as graphene, graphitic carbon nitride( g-C3N4), transition metal dichalcogenides(TMDs), transition metal carbides/nitrides(MXenes), layered double hydroxides(LDHs), transition metal oxides(TMOs), Ⅲ to Ⅵ layered semiconductor(MX4), and perovskite-type hybrids(AMX3).===In this special issue of the novel 2D nanomaterials, we selected 12 related articles in reviews, research papers and brief communications involving supercapacitor, electrochemical catalysis, sensing, battery, fluorescence, water treatment and antiflaming performance of 2D nanomaterials. We hope that readers will have a deep understanding of the current development of 2D nanomaterials, and find it beneficial to their future researches.===Toward this end, I greatly appreciate the outstanding contribution of all authors, as well as the strenuous efforts from the editorial staff members.
二维纳米材料是一种具有片状结构,厚度为纳米量级,而水平尺寸可以无限延展的材料。 2004年,曼彻斯特大学Andre Geim小组通过机械剥离法成功从石墨中分离出单原子层石墨烯,由此拉开新型二维纳米材料的帷幕。 石墨烯高载流子迁移率、超强的机械性能、良好的热力学稳定性、高热导率和大比表面积,引起科学家对新型类石墨烯二维纳米材料的兴趣。
新型二维纳米材料其纳米尺寸的厚度赋予它们非凡的物理、化学、电子和光学特性。 例如,由于电子被限定在二维平面,使二维纳米材料在凝聚态物理学和电子/光电设备上成为理想材料;大的平面尺寸使其具有极大的比表面积,有利于暴露表面原子提供更多活性位点。 二维纳米材料的这些独特性能,使其在能源存储与转化、电子器件、催化反应、传感器、生物医药等领域均有重要的潜在应用价值。 现今,新型二维纳米材料已被研制出将近20多种,诸如石墨烯、石墨相碳化氮( g-C3N4)、过渡金属二硫化物(TMDs)、过渡金属碳化物或氮化物(MXenes)、层状双金属氢氧化物(LDHs)、过渡金属氧化物(TMOs)、Ⅲ~Ⅵ族层状半导体(MX4)和无机钙钛矿型化合物(AMX3)等。
本专辑围绕新型二维纳米材料专题,收录了在相关领域具有丰富研究经验的团队所撰写的12篇相关研究的综述文章、研究论文和简报。代表性地呈现新型二维纳米材料在超级电容器、电化学催化、传感、电池、荧光、水处理、阻燃等方面的研究进展,希望借助该专辑的出版,能使广大读者更深入地了解新型二维纳米材料的研究现状和发展趋势,进而推动新型二维纳米材料研究的发展!
在此,对本专辑的所有作者、审稿人及编辑部工作人员的卓越工作和辛勤付出表示衷心的感谢!