磷酸氢二钾催化多组分一锅法反应合成1,4-二氢吡喃并[2,3-c]吡唑衍生物
李非, 毛胜雪, 孙越, 吕成伟*, 安悦
辽宁师范大学化学化工学院 辽宁 大连 116029
通讯联系人:吕成伟,讲师; Tel:0411-82158329; E-mail:chengweilv@126.com; 研究方向:绿色有机合成及有机催化应的研究
摘要

绿色、简便、高效的催化四组分反应合成吡喃并[2,3-c]吡唑类杂环化合物是当今有机化学领域的研究热点。 本文发展了在水与聚乙二醇(PEG-200)的混合液中,廉价易得的磷酸氢二钾(K2HPO4·3H2O)催化乙酰乙酸乙酯、水合肼、芳香醛和丙二腈的多组分“一锅法”反应,合成一系列1,4-二氢吡喃并[2,3-c]吡唑-5-腈衍生物,产率为88%~98%。 该方法避免了使用复杂昂贵的催化剂和繁琐的纯化过程。

关键词: 磷酸氢二钾; 1,4-二氢吡喃并[2,3-c]吡唑-5-腈; 多组分; 合成; 聚乙二醇200水溶液
中图分类号:O625 文献标志码:A 文章编号:1000-0518(2018)10-1201-07
Dipotassium Hydrogenphosphate Assisted Multi-component One-Pot Synthesis of 1,4-Hihydropyrano[2,3-c]pyrazole Derivatives
LI Fei, MAO Shengxue, SUN Yue, LÜ Chengwei, AN Yue
School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian,Liaoning 116029, China
Corresponding author:L#cod#x000dc; Chengwei, lecturer; Tel:0411-82158329; E-mail:chengweilv@126.com; Research interests:green organic synthesis and catalysis
Abstract

Catalytic one-pot four-component reaction is an ideal strategy for efficient and facile synthesis of pyrano[2,3-c]pyrazoles. The efficacy of dipotassium hydrogenphosphate(K2HPO4·3H2O) as a cheap and readily accessible catalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives via one-pot four-component reaction of ethyl acetoacetate, hydrazine hydrate, aryl aldehydes, and malononitrile was described in this paper. These multi-component condensations proceeded smoothly in aqueous polyethylene glycol(PEG-200) and the corresponding products were obtained in 88%~98% yields. This improved protocol eliminates the problems associated with expensive complex catalyst and tedious purification procedures.

Keyword: dipotassium hydrogenphosphate; 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile; multi-component reaction; synthesis; aqueous polyethylene glycol 200

吡喃并[2,3-c]吡唑类杂环化合物是构成天然产物的重要结构单元,具有重要的生物活性和药理活性,已广泛应用于合成医药和可生物降解农药[1,2,3,4,5,6,7,8,9,10,11,12,13]。 因此该类化合物的合成一直受到化学工作者的关注。 一般可以通过两组分或三组分反应制备吡喃并[2,3-c]吡唑,近年来,催化乙酰乙酸乙酯、水合肼、醛和丙二腈为原料的四组分反应合成这类化合物逐渐成为研究热点[13,14]。 已经发展了多种催化体系,催化剂主要包括十六烷基三甲基氯化铵[15]、[Dsim]AlC l4[16]、尿素[17]、NaOH[18]、椰油酰胺丙基甜菜碱[19]、[Ni(L)(mimi)][20]、NaOAc[21,22]、二氧化硫脲[23]、1-(羧甲基)碘化吡啶鎓[24]、牛血清白蛋白[25]、柠檬汁[26]、吗啉三氟甲磺酸酯[14]、三苯甲基碳阳离子[5][DMDBSI]·2HSO4[27]等。 此外,超声波[28,29]、研磨法[30]和电化学[31]等方法也可以合成吡喃并[2,3-c]吡唑衍生物。 上述方案均有各自的优点,然而,寻求更有效、可行的绿色方法来合成这类化合物仍然是有机化学研究的热点[23,27,30,31,32]

磷酸氢盐是化学品市场上最常见的化学药剂,广泛用于化肥和食品添加剂等方面[33,34,35]。 它们具有绿色环保、价格低廉、水溶性好和分离方便等优点[36,37,38,39],作为催化剂已经应用于许多有机化学反应中,例如合成多氢喹啉[40]和3,4-二氢吡喃并[c]色烯[41]。 发展以磷酸氢盐作为催化剂的绿色有机合成方法和“一锅法”多组分反应制备各种杂环化合物是我们实验室的重要研究方向之一[42,43,44]。 另外,使用环保的试剂、催化剂和溶剂是绿色化学的基础[45,46]。 水[47,48,49]和聚乙二醇(PEG)[50,51,52,53]均为现代有机合成反应中常用的绿色溶剂和有效的反应促进剂[54,55,56,57]。 亦有报道用水和PEG的混合液作为绿色反应介质,其中PEG作为共溶剂、相转移催化剂或无机盐的配位溶剂使用从而提高负离子与有机反应物的反应活性[58,59]。 因此,本文在我们实验室前期工作的基础上重点研究在水和PEG的混合溶液中,磷酸盐作为催化剂促进醛、丙二腈、乙酰乙酸乙酯和水合肼的四组分“一锅法”反应,合成吡喃并[2,3-c]吡唑衍生物(Scheme 1)。

Scheme 1 Synthesis of pyranopyrazole derivatives

1 实验部分
1.1 仪器和试剂

X-5型数字熔点仪(温度未经校正) (北京泰克仪器有限公司);Bruker TENSOR 27型傅里叶变换红外光谱仪(FT-IR,德国Bruker公司),KBr压片;Bruker Avance 500 MHz型核磁共振波谱仪(NMR,德国Bruker公司),氘代二甲亚砜(DMSO- d6)为溶剂,四甲基硅烷(TMS)为内标。

实验中使用的芳香醛均为分析纯试剂,购自于阿拉丁试剂有限公司(上海)或萨恩化学技术有限公司(上海);丙二腈(≥99%)和水合肼(≥98%)均购自于上海阿拉丁试剂有限公司;乙酰乙酸乙酯购自于天津大茂化学试剂厂。 PEG-200/400均为分析纯试剂,购自于科密欧化学试剂有限公司(天津)。

1.2 实验方法

目标化合物5的合成:向10 mL耐压管中加入20%K2HPO4·3H2O、乙酰乙酸乙酯(0.5 mmol)、水合肼(0.5 mmol)、水和PEG的混合溶液(体积比1:1)1 mL,50 ℃下搅拌20 min。 紧接着,将丙二腈(0.5 mmol)和苯甲醛(0.5 mmol)或取代的芳族醛(0.55 mmol)加入混合物中,并在50 ℃下继续搅拌1.5 h。 反应完成后直接向体系中加入1.5 mL 50%乙醇,剧烈搅拌10 min以除去杂质、催化剂和PEG-200。 将混合物在冰浴中冷却后抽滤,滤饼用冷的25%乙醇溶液洗涤。 产物不需要再进一步提纯就可以得到纯净的化合物,且产物均通过IR光谱、1H NMR和13C NMR进行表征。

2 结果与讨论
2.1 反应条件的筛选

根据实验设想,我们以乙酰乙酸乙酯、水合肼、丙二腈和苯甲醛(摩尔比1:1:1:1)作为模型底物,优化反应条件,结果见表1。 首先,分别考察KH2PO4、K2HPO4·3H2O和K3PO4·3H2O这3种磷酸盐对反应的催化效果(表1,Entries 1~3)。 如表1所示,在50 ℃的PEG-400水溶液中反应1.5 h后,碱性较强的K3PO4催化的反应产率最低,弱碱性的K2HPO4·3H2O催化的反应产率较高。 我们继续筛选其他碱性的盐如NaHCO3和K2CO3,趋势与之前相同、效果均不如K2HPO4·3H2O(表1,Entries 4~5)。 反应现象与文献报道一致,弱酸性条件有利于活化醛羰基、弱碱性条件有利于活化亲核试剂、碱性过强可能引发副反应。 随后,我们考察了溶剂对反应的影响。 当用PEG-200代替PEG-400作为溶剂与水混合时产率有小幅度的上升(表1,entry 6)。 作为对照,在1 mL水或1 mL PEG-200中进行反应得到的产率较低(表1,Entries 8~9),并且改变混合溶液中水和PEG-200的体积或比例产率并没有升高,水和PEG-200的体积比是1:1,总量1 mL时效果最好(表1,Entries 10~13)。 接下来继续考察了温度和时间对反应的影响。 结果表明,最佳反应温度为50 ℃,升高或降低反应温度产率均有一定程度的下降;最佳反应时间为1.5 h,缩短反应时间会使产率降低。 最后,考察催化剂的用量发现,增加催化剂用量产率不变,降低催化剂用量到15%时,产率降低到91%(表1,Entry 16)。

表1 反应条件的优化 Table 1 Optimization of reaction conditions
2.2 反应对不同底物4的普适性

在确定的最佳反应条件下,系统地考察了不同的醛与水合肼、乙酰乙酸乙酯和丙二腈的四组分“一锅法”反应。 因为部分取代的苯甲醛受电子效应和空间效应的影响反应活性降低,所以统一增加芳香醛的物质的量到0.55 mol。 如表2所示,大多数芳香醛均能顺利地参与四组分反应,并以良好的产率得到相应的目标产物,但均略低于苯甲醛的反应结果。 由表可以很明显地看出,芳香醛的反应活性受到取代基电子效应和空间效应的影响。 弱吸电子基团取代的苯甲醛反应效果优于给电子和强吸电子基团(表2,Entries 2~7),而且邻位取代的结果最好。 当在苯环上引入强吸电子基团时不利于反应的进行,例如硝基和氟,仅得到88%~91%的产率(表2,Entries 8,10~11)。 但间硝基底物却得到了相对较高的产率,达到95%(表2,Entry 9)。 这种现象表明,苯环上和羰基上的电子云密度降低太多会导致产率下降。 换句话说,苯甲醛的羰基被过度活化并不利于反应进行。 体积较大的溴能够阻碍羰基与苯环的共轭,在间位的硝基对羰基的吸电子作用会弱很多,这可能是两种底物产率略高的原因。 对于含有供电子基团的苯甲醛,邻位底物的产率略低于对位和间位底物,主要是受空间位阻影响。

表2 化合物5的底物扩展 Table 2 Scope of substrate for the synthesis of compound 5
3 结 论

本文在K2HPO4·3H2O催化下,高产率地实现了乙酰乙酸乙酯、水合肼、芳香醛与丙二腈进行4组分“一锅法”反应,合成了一系列1,4-二氢吡喃并[2,3-c]吡唑衍生物。 此方法最突出的优点是绿色环保、反应条件温和、催化剂廉价易得、后处理和提纯简单。

辅助材料(Supporting Information)[化合物5a~5q的IR、1H NMR、13C NMR数据及谱图]可以免费从本刊网站(http://yyhx.ciac.jl.cn/)下载。

参考文献
[1] Kanagaraj K, Pitchumani K. Solvent-Free Multicomponent Synthesis of Pyranopyrazoles: Per-6-amino-b-cyclodextrin as a Remarkable Catalyst and Host[J]. Tetrahedron Lett, 2010, 51(25): 3312-3316. [本文引用:1]
[2] Saha M, Das B, Pal A K. Synthesis of Pyran Derivatives under Ultrasound Irradiation Using Ni Nanoparticles as Reusable Catalysts in Aqueous Medium[J]. C R Chim, 2013, 16(12): 1079-1085. [本文引用:1]
[3] Bian L, Xu J, Xie L, et al. Three-component Synthesis of 2-Amino-3-cyano-5-oxo-4-perfluoroalkyl-5, 6, 7, 8-tetrahydro-4 H-chromene Derivatives[J]. Tetrahedron, 2013, 69(30): 6121-6128. [本文引用:1]
[4] Paul S, Pradhan K, Ghosh S, et al. Uncapped SnO2 Quantum Dot Catalyzed Cascade Assembling of Four Components: A Rapid and Green Approach to the Pyrano[2, 3-c]pyrazole and Spiro-2-oxindole Derivatives[J]. Tetrahedron, 2014, 70(36): 6088-6099. [本文引用:1]
[5] Moosavi-Zare A R, Zolfigol M A, Mousavi-Tashar A. Synthesis of Pyranopyrazole Derivatives by in Situ Generation of Trityl Carbocation under Mild and Neutral Media[J]. Res Chem Intermed, 2016, 42(10): 7305-7312. [本文引用:2]
[6] Sabry N M, Mohamed H M, Khattab E S, et al. Synthesis of 4H-chromene, Coumarin, 12 H-chromeno[2, 3-d]pyrimidine Derivatives and Some of Their Antimicrobial and Cytotoxicity Activities[J]. Eur J Med Chem, 2011, 46(2): 765-772. [本文引用:1]
[7] Costa M, Proenca F. 2-Aryl-1, 9-dihydrochromeno[3, 2-d]imidazoles: A Facile Synthesis from Salicylaldehydes and Arylideneaminoacetonitrile[J]. Tetrahedron, 2011, 67(10): 1799-1804. [本文引用:1]
[8] Yao C, Jiang B, Li T, et al. Design and an Efficient Synthesis of Natural Product-based Cyclopenta[b]pyran Derivatives with Potential Bioactivity[J]. Bioorg Med Chem Lett, 2011, 21(1): 599-601. [本文引用:1]
[9] Zonouz A M, Eskandari I, Khavasi H R. A Green and Convenient Approach for the Synthesis of Methyl 6-Amino-5-cyano-4-aryl-2, 4-dihydropyrano[2, 3-c]pyrazole-3-carboxylates via a One-Pot, Multi-component Reaction in Water[J]. Tetrahedron Lett, 2012, 53(41): 5519-5522. [本文引用:1]
[10] Mandha S R, Siliveri S, Alla M, et al. Eco-friendly Synthesis and Biological Evaluation of Substituted Pyrano[2, 3-c]pyrazoles[J]. Bioorg Med Chem Lett, 2012, 22(16): 5272-5278. [本文引用:1]
[11] LI Xiaojun, GUO Hongyun. One-Pot Synthesis of 1, 4-dihydropyrano[2, 3-c]pyrazoles Catalyzed by Basic Ionic Liquids[J]. Chinese J Org Chem, 2012, 32(1): 127-132(in Chinese).
李晓君, 郭红云. 碱性离子液体催化“一锅法”合成1, 4-二氢吡喃并[2, 3-c]吡唑[J]. 有机化学, 2012, 32(1): 127-132. [本文引用:1]
[12] Mecadon H, Rohman Md R, Rajbangshi M, et al. γ-Alumina as a Recyclable Catalyst for the Four-Component Synthesis of 6-Amino-4-alkyl/aryl-3-methyl-2, 4-dihydropyrano[2, 3-c]pyrazole-5- carbonitriles in Aqueous Medium[J]. Tetrahedron Lett, 2011, 52(19): 2523-2525. [本文引用:1]
[13] WANG Yinglei, LUO Jun, XING Tantan, et al. Synthesis of Pyrano[2, 3-c]pyrazoles Catalyzed by Poly(Ethylene Glycol) Bridged Triethylamine Functionalized Dication Ionic Liquid[J]. Chinese J Org Chem, 2013, 33(9), 2016-2021(in Chinese).
王英磊, 罗军, 邢昙昙, . 三乙胺功能化聚乙二醇双子离子液体催化合成吡喃并[2, 3-c]吡唑[J]. 有机化学, 2013, 33(9), 2016-2021. [本文引用:2]
[14] Zhou C F, Li J J, Su W K. Morpholine Triflate Promoted One-Pot, Four-Component Synthesis of Dihydropyrano[2, 3-c]pyrazoles[J]. Chinese Chem Lett, 2016, 27(11): 1686-1690. [本文引用:2]
[15] Wu M, Feng Q, Wan D, et al. Ctacl as Catalyst for Four-Component, One-Pot Synthesis of Pyranopyrazole Derivatives in Aqueous Medium[J]. Synth Commun, 2013, 43(12): 1721-1726. [本文引用:1]
[16] Moosavi-Zare A R, Zolfigol M A, Noroozizadeh E, et al. Synthesis of 6-Amino-4-(4-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1, 4-dihydropyrano[2, 3-c]pyrazoles Using Disulfonic Acid Imidazolium Chloroaluminate as a Dual and Heterogeneous Catalyst[J]. New J Chem, 2013, 37(12): 4089-4094. [本文引用:1]
[17] Brahmachari G, Banerjee B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4 H-pyrans and Pyran-annulated Heterocyclic Scaffolds via an Eco-friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-catalyst[J]. ACS Sustainable Chem Eng, 2014, 2(3): 411-422. [本文引用:1]
[18] Ilovaisky A I, Medvedev M G, Merkulova V M, et al. Green Approach to the Design of Functionalized Medicinally Privileged 4-Aryl-1, 4-dihydropyrano[2, 3-c]-pyrazole-5-carbonitrile Scaffold[J]. J Heterocycl Chem, 2014, 51(2): 523-526. [本文引用:1]
[19] Tamaddon F, Alizadeh M. A Four-component Synthesis of Dihydropyrano[2, 3-c]pyrazoles in a New Water-Based Worm-Like Micellar Medium[J]. Tetrahedron Lett, 2014, 55(26): 3588-3591. [本文引用:1]
[20] Ebrahimipour S Y, Ranjabr Z R, Kermani E T, et al. A Mixed-ligand Ternary Complex of Nickel(Ⅱ): Synthesis, Characterization and Catalytic Investigation for the Synthesis of Pyranopyrazoles[J]. Trans Met Chem, 2015, 40(1): 39-45. [本文引用:1]
[21] Elinson M N, Nasybullin R F, Nikishin G I. Sodium Acetate Catalyzed Tandem Knoevenagel Michael Multicomponent Reaction of Aldehydes, 2-Pyrazolin-5-ones, and Cyano-functionalized C-H Acids: Facile and Efficient Way to 3-(5-Hydroxypyrazol-4-yl)-3-aryl-propionitriles[J]. C R Chim, 2013, 16(9): 789-794. [本文引用:1]
[22] Elinson M N, Nasybullin R F, Ryzhkov F V, et al. Solvent-free and On-water' Multicomponent Assembling of Aldehydes, 3-Methyl-2-pyrazoline-5-one, and Malononitrile: Fast and Efficient Approach to Medicinally Relevant Pyrano[2, 3-c]pyrazole Scaffold[J]. Monatsh Chem, 2015, 146(4): 631-635. [本文引用:1]
[23] Vekariya R H, Patel K D, Pate H. A Green and One-pot Synthesis of a Library of 1, 4-Dihydropyrano[2, 3-c]-pyrazole-5-carbonitrile Derivatives Using Thiourea Dioxide(TUD) as an Efficient and Reusable Organocatalyst[J]. Res Chem Intermed, 2016, 42(5): 4683-4696. [本文引用:2]
[24] Moosavi-Zare A R, Zolfigol M A, Salehi-Moratab R, et al. Catalytic Application of 1-(Carboxymethyl)pyridinium Iodide on the Synthesis of Pyranopyrazole Derivatives[J]. J Mol Catal A: Chem, 2016, 415: 144-150. [本文引用:1]
[25] Huang X, Li Z, Wang D, et al. Bovine Serum Albumin: An Efficient and Green Biocatalyst for the One-Pot Four-Component Synthesis of Pyrano[2, 3-c]pyrazoles[J]. Chinese J Catal, 2016, 37(9): 1461-1467. [本文引用:1]
[26] Vekariya R H, Patel K D, Patel H D. Fruit Juice of Citrus Limon as a Biodegradable and Reusable Catalyst for Facile, Eco-friendly and Green Synthesis of 3, 4-Disubstituted Isoxazol-5(4 H)-ones and Dihydropyrano[2, 3-c]-pyrazole Derivatives[J]. Res Chem Intermed, 2016, 42(10): 7559-7579. [本文引用:1]
[27] Zakeri M, Nasef M M, Kargaran T, et al. Synthesis of Pyrano[2, 3-c]pyrazoles by Ionic Liquids under Green and Eco-safe Conditions[J]. Res Chem Intermed, 2017, 43(2): 717-728. [本文引用:2]
[28] WANG Huiyan, ZOU Yi, TAO Chuanzhou. One-pot Four-component Synthesis of Dihydropyrano[2, 3-c]pyrazoles under Ultrasound Irradiations[J]. Chinese J Org Chem, 2011, 31(12): 2161-2166(in Chinese).
王慧彦, 邹毅, 陶传洲. 超声作用下四组分一锅法合成二氢吡喃并[2, 3-c]吡唑衍生物[J]. 有机化学, 2011, 31(12): 2161-2166. [本文引用:1]
[29] Zou Y, Hu Y, Liu H, et al. An Efficient and Green Synthesis of 6-Amino-3-phenyl-4-aryl-1, 4-dihydropyrano[2, 3-c]pyrazole-5-carbonitrile Derivatives under Ultrasound Irradiation in Aqueous Medium[J]. J Heterocycl Chem, 2013, 50(5): 1174-1179. [本文引用:1]
[30] Dekamin M G, Alikhani M, Emami A, et al. An Effcient Catalyst and Solvent-Free Method for the Synthesis of Medicinally Important Dihydropyrano[2, 3-c]pyrazole Derivatives Using Ball Milling Technique[J]. J Iran Chem Soc, 2016, 13(3): 591-596. [本文引用:2]
[31] Upadhyay A, Sharma L K, Singh V K, et al. Electrochemically Induced One Pot Synthesis of 1, 4-Dihydropyrano[2, 3-c]-pyrazole-5-carbonitrile Derivatives via a Four Component-tandem Strategy[J]. Tetrahedron Lett, 2017, 58(13): 1245-1249. [本文引用:1]
[32] Iravani N, Keshavarz M, Kish H A S, et al. Tin Sulfide Nanoparticles Supported on Activated Carbon as an Efficient and Reusable Lewis Acid Catalyst for Three-Component One-Pot Synthesis of 4 H-Pyrano[2, 3-c]pyrazole Derivatives[J]. Chinese J Catal, 2015, 36(4): 626-633. [本文引用:1]
[33] Kumar H, Kaur K. Effect of Dipotassium Hydrogen Phosphate on Thermodynamic Properties of Glycine and L-Alanine in Aqueous Solutions at Different Temperatures[J]. J Chem Thermodyn, 2012, 53: 86-92. [本文引用:1]
[34] Zhang X, Li K, Li H, et al. Dipotassium Hydrogen Phosphate as Reducing Agent for the Efficient Reduction of Graphene Oxide Nanosheets[J]. J Colloid Interface Sci, 2013, 409(11): 1-7. [本文引用:1]
[35] Kumar H, Singla M, Mittal H. Volumetric, Acoustic and Viscometric Behaviour of Dipotassium Hydrogen Phosphate and Disodium Hydrogen Phosphate in Aqueous Solution of N-Acetyl Glycine at Different Temperatures[J]. J Chem Thermodyn, 2016, 94: 204-220. [本文引用:1]
[36] Saikia A, Barthakur M G, Borthakur M, et al. Conjugate Base Catalysed One-Pot Synthesis of Pyrazoles from β-Formyl Enamides[J]. Tetrahedron Lett, 2006, 47(1): 43-46. [本文引用:1]
[37] Balalaie S, Abdolmohammadi S, Bijanzadeh H R, et al. Diammonium Hydrogen Phosphate as a Versatile and Efficient Catalyst for the One-Pot Synthesis of Pyrano[2, 3-d]pyrimidinone Derivatives in Aqueous Media[J]. Mol Diversity, 2008, 12(2): 85-91. [本文引用:1]
[38] Mandhane P G, Joshi R S, Nagargoje D R, et al. Ultrasound-Promoted Greener Approach to Synthesize α-Hydroxy Phosphonates Catalyzed by Potassium Dihydrogen Phosphate under Solvent-free Condition[J]. Tetrahedron Lett, 2010, 51(11): 1490-1492. [本文引用:1]
[39] Damavandi S, Sandaroos R. KHPO4/Ultrasonic Irradiation Catalyzed Multicomponent Synthesis of Aminocyanopyrano[3, 2-b]indole[J]. Res Chem Intermed, 2013, 39(3): 1251-1256. [本文引用:1]
[40] Bodaghifard M A, Solimannejad M, Asadbegi S, et al. Mild and Green Synthesis of Tetrahydrobenzopyran, Pyranopyrimidinone and Polyhydroquinoline Derivatives and DFT Study on Product Structures[J]. Res Chem Intermed, 2016, 42(2): 1165-1179. [本文引用:1]
[41] Abdolmohammadi S, Balalaie S. Novel and Efficient Catalysts for the One-Pot Synthesis of 3, 4-Dihydropyrano[c]chromene Derivatives in Aqueous Media[J]. Tetrahedron Lett, 2007, 48(18): 3299-3303. [本文引用:1]
[42] LYU Chengwei, LIU Yanhang, WANG Jiajing, et al. Potassium Dihydrogen Phosphate Catalyzed Yonemitsu Condensation for Synthesis of 5-[(Indol-3-yl)-arylmethyl]-2, 2-dimethyl-1, 3-dioxane-4, 6-dine Derivatives[J]. Chinese J Appl Chem, 2015, 32(12): 1371-1378(in Chinese).
吕成伟, 刘妍杭, 王佳晶, . 磷酸二氢钾催化Yonemitsu缩合反应合成5-[(3-吲哚基)-芳甲基]-2, 2-二甲基-1, 3-二噁烷-4, 6-二酮衍生物[J]. 应用化学, 2015, 32(12): 1371-1378. [本文引用:1]
[43] Gao S, Xiao D, Yang Y, et al. KH2PO4 Promoted Practical and Environmentally Friendly Preparation of Coumarin-3-carboxylic Acids under Solvent-free Condition[J]. Heterocycles, 2016, 92(9): 1698-1705. [本文引用:1]
[44] Yü S J, Wu S, Zhao X M, et al. Green and Efficient Synthesis of Acridine-1, 8-diones and Hexahydroquinolines via a KH2PO4 Catalyzed Hantzsch-type Reaction in Aqueous Ethanol[J]. Res Chem Intermed, 2017, 43(5): 3121-3130. [本文引用:1]
[45] Kumar A, Rao M S, Rao V K. Sodium Dodecyl Sulfate-assisted Synthesis of 1-(Benzothiazolylamino)methyl-2-naphthols in Water[J]. Aust J Chem, 2010, 63(11): 1538-1540. [本文引用:1]
[46] Chanda A, Fokin V V. Organic Synthesis “On Water”[J]. Chem Rev, 2009, 109(2): 725-748. [本文引用:1]
[47] Bhardwaj M, Sahi S, Mahajan H, et al. Novel Heterogeneous Catalyst Systems Based on Pd(0) Nanoparticles onto Amine Functionalized Silica-Cellulose Substrates [Pd(0)-EDA/SCS]: Synthesis, Characterization and Catalytic Activity Toward C-C and C-S Coupling Reactions in Water under Limiting Basic Conditions[J]. J Mol Catal A: Chem, 2015, 408: 48-59. [本文引用:1]
[48] Brahmachari G. Room Temperature One-pot Green Synthesis of Coumarin-3-carboxylic Acids in Water: A Practical Method for the Large-Scale Synthesis[J]. ACS Sustainable Chem Eng, 2015, 3(9): 2350-2358. [本文引用:1]
[49] Xiao J, Wen H, Wang L, et al. Catalyst-Free Dehydrative SN1-Type Reaction of Indolyl Alcohols with Diverse Nucleophiles “On Water”[J]. Green Chem, 2016, 18(4): 1032-1037. [本文引用:1]
[50] Candeias N R, Branco L C, Gois P M P, et al. More Sustainable Approaches for the Synthesis of N-Based Heterocycles[J]. Chem Rev, 2009, 109(6): 2703-2802. [本文引用:1]
[51] Wang X C, Yang G J, Quan Z J, et al. Synthesis of 2-Substituted Pyrimidines via Cross-coupling Reaction of Pyrimidin-2-yl Sulfonates with Nucleophiles in Polyethylene Glycol 400[J]. Synlett, 2010, 41(46): 1657-1660. [本文引用:1]
[52] Reddy M V, Kim J S, Lim K T, et al. Polyethylene Glycol (PEG-400): An Efficient Green Reaction Medium for the Synthesis of Benzo[4, 5]imidazo[1, 2-a]-pyrimido[4, 5-d]pyrimidin-4(1 H)-ones under Catalyst-free Conditions[J]. Tetrahedron Lett, 2014, 55(47): 6459-6462. [本文引用:1]
[53] Khan M N, Karamthulla S, Choudhury L H, et al. Ultrasound Assisted Multicomponent Reactions: A Green Method for the Synthesis of Highly Functionalized Selenopyridines Using Reusable Polyethylene Glycol as Reaction Medium[J]. RSC Adv, 2015, 5(28): 22168-22172. [本文引用:1]
[54] Kumar M A, Babu M F S, Srinivasulu K, et al. Polyethylene Glycol in Water: A Simple and Environment Friendly Media for Strecker Reaction[J]. J Mol Catal A: Chem, 2007, 265(1-2): 268-271. [本文引用:1]
[55] Engel-Andreasen J, Shimpukade B, Ulven T. Selective Copper Catalysed Aromatic N-Arylation in Water[J]. Green Chem, 2013, 15(2): 336-340. [本文引用:1]
[56] Nagaraju A, Ramulu B J, Shukla G, et al. Catalyst-free One-pot Four-component Domino Reactions in Water-PEG-400: Highly Efficient and Convergent Approach to Thiazoloquinoline Scaffolds[J]. Green Chem, 2015, 17(2): 950-958. [本文引用:1]
[57] Zhang J, Yao J, Liu J, et al. Four-component Reaction Between Naphthols, Substituted β-Nitrostyrenes, Substituted Benzaldehydes and Ammonium Acetate in Water-PEG-400: An Approach to Construct Polysubstituted Naphthofuranamines[J]. RSC Adv, 2015, 5(60): 48580-48585. [本文引用:1]
[58] Santaniello E, Ferraboschi P, Sozzani P. Efficient and Selective Oxidation of Alcohols by Potassium Dichromate Solutions[J]. Synthesis, 1980, 1980(8): 646-647. [本文引用:1]
[59] Wang L, Huang M, Zhu X, et al. Polyethylene Glycol(PEG-200)-Promoted Sustainable One-Pot Three-Component Synthesis of 3-Indole Derivatives in Water[J]. Appl Catal A: General, 2013, 454: 160-163. [本文引用:1]