韩琳, 刘孝娟, 孟君玲, 姚传刚, 武晓杰, 孟健. LaPbMnSbO6化合物的结构精修和磁性表征 . 32(3): 350-355 HAN Lin, LIU Xiaojuan, MENG Junling, YAO Chuan'gang, WU Xiaojie, MENG Jian. Structure Refinements and Magnetic Properties of LaPbMnSbO6 . Chinese Journal of Applied Chemistry, 32(3): 350-355
Structure Refinements and Magnetic Properties of LaPbMnSbO6
HAN Lina,b, LIU Xiaojuana,*, MENG Junlinga,b, YAO Chuan'ganga,b, WU Xiaojiea, MENG Jiana,*
aState Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
bUniversity of Chinese Academy of Sciences,Beijing 100049,China
Corresponding author:LIU Xiaojuan, professor; Tel:0431-85262415; E-mail:lxjuan@ciac.ac.cn; Research interests:first-principles calculations and simulation
Co-corresponding author:MENG Jian, propessor; Tel:0431-85262030; E-mail:jmeng@ciac.ac.cn; Research interests:magnetic and electric properties of lanthanide-doped materials; magnesium-rare earth master alloy
Fund:Supported by the National Natural Science Foundation of China(No.21221061, No.21071141, No.51372244), Natural Scientific Foundation of Jilin Province(No.201115126)
Abstract
Double perovskite LaPbMnSbO6 was synthesized by two-step semi-chemical method, and the crystal structure and magnetic properties have been investigated. The crystal structure has been solved by X-ray diffraction(XRD) data in the monoclinic space group P21/ n(No.14). The MnO6 and SbO6 octahedra are rock-salt ordered over the B-site of the perovskite structure. Due to the existence of Pb2+ ions, second-order Jahn-Teller effect is occurred and the lattice distortions are anisotropic in the interior of BO6 octahedra. The magnetization curves show a typical antiferromagnetic ordering, with an antiferromagnetic ordering transition temperature at TN=9 K.
Keyword:
double perovskites; two-step semi-chemical; structure refinements; magnetic properties
图1 双钙钛矿化合物LaPbMnSbO6在室温下的粉末XRD精修谱图Fig.1 Rietveld refinement of double perovskites LaPbMnSbO6 from the XRD data at room temperature observed(a), calculated(b) and difference(d) profiles are shown, and the expected Bragg reflection positions are marked with vertical bars(c)
表1 双钙钛矿化合物LaPbMnSbO6 室温下的Rietveld精修结果的结构参数Table 1 Structural parameters of Rietveld refinement for LaPbMnSbO6 double perovskites from the XRD data at room temperature
Atom
Wyckoff position
x
y
z
Uiso/nm2
occ
La/Pb
4e
-0.0063(3)
0.0111(2)
0.2522(2)
1.83(2)
0.5/0.5
Mn
2d
0.5
0
0
0.71(6)
1
Sb
2c
0.5
0
0.5
1.16(3)
1
O1
4e
0.320(3)
0.330(3)
0.040(2)
0.87(17)
1
O2
4e
0.251(4)
-0.243(3)
0.058(2)
0.87(17)
1
O3
4e
-0.035(4)
0.502(2)
0.245(2)
0.87(17)
1
The unit cell parameters are a=0.57132(1) nm, b=0.57334(1) nm, c=0. 80999(2) nm, β =90.002(3)° , V=0.265324(4) nm3, with reliability factors χ 2=4.477, Rp=5.93%, Rwp=8.69%.
表1 双钙钛矿化合物LaPbMnSbO6 室温下的Rietveld精修结果的结构参数Table 1 Structural parameters of Rietveld refinement for LaPbMnSbO6 double perovskites from the XRD data at room temperature
表2
Table 2
表2(Table 2)
表2 双钙钛矿化合物LaPbMnSbO6在室温下所选定的键长(nm)和键角(° )数据Table 2 Selected bond length(nm) and bond angles(° ) for LaPbMnSbO6 double perovskites at room temperature
Bond length/nm
Bond length/nm
La(Pb)— O1
0.312(2)
La(Pb)— O2
0.260(2)
0.224(2)
0.255(2)
0.269(2)
0.317(2)
0.356(2)a
0.323(2)a
La(Pb)— O3
0.293(1)
< La(Pb)— O>
0.278(2)
0.282(1)
CN b
10
0.262(2)
t Factorc
0.92
0.309(2)
MnO6 octahedra
SbO6 octahedra
Mn— O1(× 2)
0.218(2)
Sb— O1(× 2)
0.210(2)
Mn— O2(× 2)
0.204(2)
Sb— O2(× 2)
0.211(2)
Mn— O3(× 2)
0.207(2)
Sb— O3(× 2)
0.200(2)
< Mn— O>
0.210(2)
< Sb— O>
0.207(2)
Bond angle/(° )
Bond angle/(° )
Mn— O1— Sb
142.3(8)
O1— Mn— O3
83.8(7)
Mn— O2— Sb
153.9(10)
O2— Mn— O3
80.9(9)
Mn— O3— Sb
168.7(12)
O1— Sb— O2
72.4(7)
< Mn— O— Sb>
155.0(10)
O1— Sb— O3
86.3(8)
O1— Mn— O2
76.7(7)
O2— Sb— O3
81.0(8)
a.Distance disregarded; b.CN stands for coordination number; c.t Factor=(< RA> +RO)/√ 2(< RB> +RO); RLa3+=0.127 nm for CN=10, RPb2+=0.140 nm for CN=10, RMn2+=0.083(HS) nm, RSb5+=0.060 nm for CN=6, RO2-=0.140 nm.
表2 双钙钛矿化合物LaPbMnSbO6在室温下所选定的键长(nm)和键角(° )数据Table 2 Selected bond length(nm) and bond angles(° ) for LaPbMnSbO6 double perovskites at room temperature
图2 双钙钛矿氧化物LaPbMnSbO6沿[110](A)、[1-10](B)和[001](C)3个晶轴方向的晶体结构示意图Fig 2 Views of the monoclinic structure along the [110], [1-10] and [001] directions are shown for LaPbMnSbO6
图3 LaPbMnSbO6化合物在外加磁场强度为100 Oe时的零场冷却(ZFC)和场冷却(FC)条件下的磁化强度随温度的变化关系。内插图为磁化率的倒数随温度的变化关系以及居里-外斯线性拟合的结果Fig.3 Temperature dependence of the zero-field-cooled(ZFC) and field-cooled(FC) magnetization for LaPbMnSbO6 under an applied magnetic field of 100 Oe. The insets show Curie-Weiss fit curve of the reciprocal susceptibility γ -1vs T.
图4 LaPbMnSbO6在5 K下磁化强度随温度的变化曲线, 磁场强度从-5 T到5 TFig.4 Field dependence of the magnetization plots for LaPbMnSbO6 measured at 5 over the magnetic field ranges from -5 T to 5 T
OpelM, GepragsS, Menzel EP, et al. Novel Multifunctional Materials Based on Oxide Thin Films and Artificial Heteroepitaxial Multilayers[J]. Phys Status Solidi A , 2011, 208(2): 232-251. [本文引用:1][JCR: 1.463]
Kobayashi KL, KimuraT, SawadaH, et al. Room-temperature Magnetoresistance in an Oxide Material with an Ordered Double-perovskite Structure[J]. Nature, 1998, 395(6703): 677-680. [本文引用:1][JCR: 38.597]
[5]
MishraR, Restrepo OD, Woodward PM, et al. First-principles Study of Defective and Nonstoichiometric Sr2FeMoO6[J]. Chem Mater, 2010, 22(22): 6092-6102. [本文引用:1][JCR: 8.238]
Mand al TK, Abakumov AM, Lobanov MV, et al. Synthesis, Structure, and Magnetic Properties of SrLaMnSbO6: A New B-site Ordered Double Perovskite[J]. Chem Mater, 2008, 20(14): 4653-4660. [本文引用:4][JCR: 8.238]
[10]
WalshA, Payne DJ, Egdell RG, et al. Stereochemistry of Post-transition Metal Oxides: Revision of the Classical Lone Pair Model[J]. Chem Soc Rev, 2011, 40(9): 4455-4463. [本文引用:1][JCR: 24.892]
[11]
Larregola SA, Alonso JA, SheptyakovD, et al. An Original Polymorph Sequence in the High-temperature Evolution of the Perovskite Pb2TmSbO6[J]. J Am Chem Soc, 2010, 132(41): 14470-14480. [本文引用:1][JCR: 10.677]
[12]
Larson AC, Von DreeleR B. General Structure Analysis System(GSAS), Los Alamos National Laboratory Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, 2004. [本文引用:1]
RetuertoM, Garcia-Hernand ezM, Martinez-LopezM J, et al. A. Switching from Ferro- to Antiferromagnetism in A2CrSbO6(A=Ca, Sr) Double Perovskites: A Neutron Diffraction Study[J]. J Mater Chem, 2007, 17(33): 3555-3561. [本文引用:1][JCR: 5.968]
Single-molecule magnets(SMMs) continue to be an attractive research field because of their potential applications in quantum information storage and quantum computing. Lanthanide-based polynuclear system is an important avenue to explore in pursuit of SMMs with higher anisotropic barriers. The progress and prospect on pure 4f SMMs are briefly reviewed with an emphasis on the magnetic properties of the mono-, tri- and tetra-nuclear dysprosium SMMs.
(State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022)