Please wait a minute...
应用化学
今天是
应用化学  2020, Vol. 37 Issue (1): 1-15    DOI: 10.11944/j.issn.1000-0518.2020.01.190199
  综合评述 本期目录 | 过刊浏览 | 高级检索 |
沸石分子筛酸性质表征方法研究进展
刘萌,吴志杰(),潘涛
中国石油大学(北京)重质油国家重点实验室和CNPC催化重点实验室 北京 102249
Recent Advance in the Characterization of Acidic Properties of Zeolites
LIU Meng,WU Zhijie(),PAN Tao
State Key Laboratory of Heavy Oil and Key Laboratory of Catalysis of CNPC,China University of Petroleum(Beijing),Beijing 102249,China
全文: PDF(2177 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

沸石分子筛的酸性质决定其酸催化性能,如何准确、定量地区分沸石分子筛上酸类型、密度、强度及分布,对于阐明沸石酸催化性能具有重要的意义。 本文主要总结了近几年来关于沸石分子筛酸性位分布、酸类型、酸强度等重要酸性质的定性和定量分析方法的研究进展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘萌
吴志杰
潘涛
关键词 沸石分子筛酸性质表征方法Brønsted酸    
Abstract

The catalytic performance of zeolite is mainly dependent on its acidic properties. The accurately and quantitatively distinguishing acid type, density, strength and site distribution of acid is significant to clarify the catalytic performance of zeolites. Here, we summarize the recent advances in the qualitative and quantitative analytic methods for acid site distribution, acid type and acid strengths.

Key wordszeolite    acid properties    characterization method    Brønsted acid
收稿日期: 2019-07-17           接受日期: 2019-10-14
基金资助:国家自然科学基金(U1662131)资助
通讯作者: 吴志杰     E-mail: zhijiewu@cup.edu.cn
引用本文:   
刘萌, 吴志杰, 潘涛. 沸石分子筛酸性质表征方法研究进展[J]. 应用化学, 2020, 37(1): 1-15.
LIU Meng, WU Zhijie, PAN Tao. Recent Advance in the Characterization of Acidic Properties of Zeolites. Chinese Journal of Applied Chemistry, 2020, 37(1): 1-15.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2020.01.190199      或      http://yyhx.ciac.jl.cn/CN/Y2020/V37/I1/1
图1MFI(a,b)和MWW(c,d)沸石的骨架结构和孔道结构图(2017 Elsevier出版社版权许可) [5]
Fig.1The framework and channel structure of MFI(a,b) and MWW(c,d) zeolite(Reprinted with permission from reference [5]. Copyright 2017 Elsevier)
图2DME(A,B), DTBP(C,D)和TPP分子(E,F)的结构和动力学直径
Fig.2Structural and kinetic diameter of DME(A and B), DTBP(C and D) and TPP(E and F) molecules
图3均三甲苯存在下苯甲醇的反应路径(2014 American Chemical Society出版社版权许可) [11]
Fig.3The reaction route of benzyl alcohol in the presence of mesitylene (Reprinted with permission from reference [11]. Copyright 2014 American Chemical Society)
图4不同硅铝比HZSM-5沸石的NH3-TPD图
Fig.4NH3-TPD profiles of HZSM-5 zeolites with different Si/Al ratios
图5373~873 K温度下H-MOR沸石吸附氨的红外光谱图(2013 John Wiley and Sons出版社版权许可) [19]
Fig.5IR spectra of H-mordenite zeolite with adsorbed ammonia measured at 373 to 873 K(Reprinted with permission from reference [19]. Copyright 2013 John Wiley and Sons)
图6HZSM-5沸石的吡啶红外谱图
Fig.6Py-IR spectra of HZSM-5 zeolite
图7CO(2100~2250 cm-1)与H-MOR分子筛的羟基相互作用(a)和OH伸缩振动(3000~3600 cm-1)123 K下的红外光谱图(b)(2008 American Chemical Society出版社版权许可) [48]
Fig.7Infrared spectra of the CO species(2100~2250 cm-1) interacting with hydroxyl groups of H-MOR(a) and OH stretching region(3000~3600 cm-1) upon CO adsorption at 123 K(b)(Reprinted with permission from reference [48]. Copyright 2008 American Chemical Society)
图8不同硅铝比H-Beta沸石的27Al MAS NMR谱图(2017 American Chemical Society出版社版权许可)[52]
Fig.827Al MAS NMR spectra of H-Beta zeolites with different Si/Al ratios (Reprinted with permission from reference [52]. Copyright 2017 American Chemical Society)
[1] XU Ruren,PANG Wenqin,HUO Qisheng,et alMolecular Sieves and Porous Materials Chemistry[M]. Beijing:Science Press,2015(in Chinese). 徐如人,庞文琴,霍启升,等. 分子筛与多孔材料化学[M]. 北京:科学出版社,2015.
[2] WU Zhijie. Principle of Energy Conversion Catalysis[M]. China University of Petroleum Press,2018(in Chinese). 吴志杰. 能源转化催化原理[M]. 中国石油大学出版社,2018.
[3] XIANG Shouhe,WAGNG Jingzhong,GAO Feng,et al. Study on L Acid of Hβ Zeolite[J]. Chinese J Catal,1991,12(5):406-408.(in Chinese). 项寿鹤,王敬中,高峰,等. Hβ沸石上L酸的研究[J]. 催化学报,1991,12(5):406-408.
[4] TANG Yi,HUA Weiming,GAO Zi.Framework Structure and Acid Strength of Zeolite[J]. Acta Phys-Chim Sin,1994,10(12):1116-1120(in Chinese). 唐颐,华伟明,高滋. 沸石的骨架结构和酸强度[J]. 物理化学学报,1994,10(12):1116-1120.
[5] Wu Y,Emdadi L,Qin D,et al. Quantification of External Surface and Pore Mouth Acid Sites in Unit-Cell Thick Pillared MFI and Pillared MWW Zeolites[J]. Micropor Mesopor Mater,2017,241:43-51.
[6] Lad J B,Makkawi Y T.Adsorption of Dimethyl Ether(DME) on Zeolite Molecular Sieves[J]. Chem Eng J,2014,256:335-346.
[7] Ordomsky V V,Murzin V Y,Monakhova Y V,et al. Nature, Strength and Accessibility of Acid Sites in Micro/Mesoporous Catalysts Obtained by Recrystallization of Zeolite BEA[J]. Micropor Mesopor Mater,2007,105(1/2):101-110.
[8] Corma A,Fornes V,Forni L,et al. 2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites[J]. J Catal,1998,179(2):451-458.
[9] Emdadi L,Oh S C,Wu Y.The Role of External Acidity of Meso-/Microporous Zeolites in Determining Selectivity for Acid-Catalyzed Reactions of Benzyl Alcohol[J]. J Catal,2016,335:165-174.
[10] Hu B,Gay I D.Probing Surface Acidity by 31P Nuclear Magnetic Resonance Spectroscopy of Arylphosphines[J]. Langmuir,1999,15(2):477-481.
[11] Emdadi L,Wu Y,Zhu G,et al. Dual Template Synthesis of Meso-and Microporous MFI Zeolite Nanosheet Assemblies with Tailored Activity in Catalytic Reactions[J]. Chem Mater,2012,26(3):1345-1355.
[12] Liu D,Zhang X,Bhan A,et al. Activity and Selectivity Differences of External Br nsted Acid Sites of Single-Unit-Cell Thick and Conventional MFI and MWW Zeolites[J]. Micropor Mesopor Mater,2014,200:287-290.
[13] Chal R,Gerardin C,Bulut M,et al. Overview and Industrial Assessment of Synthesis Strategies Towards Zeolites with Mesopores[J]. ChemCatChem,2011,3(1):67-81.
[14] Wu Y,Emdadi L,Wang Z,et al. Textural and Catalytic Properties of Mo Loaded Hierarchical Meso-Microporous Lamellar MFI and MWW Zeolites for Direct Methane Conversion[J]. Appl Catal A,2014,470:344-354.
[15] Wu Y,Emdadi L,Oh S C,et al. Spatial Distribution and Catalytic Performance of Metal-Acid Sites in Mo/MFI Catalysts with Tunable Meso-Microporous Lamellar Zeolite Structures[J]. J Catal,2015,323:100-111.
[16] Wu Y,Emdadi L,Schulman E,et al. Overgrowth of Lamellar Silicalite-1 on MFI and BEA Zeolites and Its Consequences on Non-oxidative Methane Aromatization Reaction[J]. Micropor Mesopor Mater,2017,263:1-10.
[17] Wu Z J,Zhao K Q,Zhang Y,et al. Synthesis and Consequence of Aggregated Nanosized ZSM-5 Zeolite Crystals for Methanol to Propylene Reaction[J]. Ind Eng Chem Res,2019,58(25):10737-10749.
[18] LIU Wenhuan,GUO Peng,SU Ji,et al. Acid Characterization and Acid Catalytic Performance of Titanium Silicate Molecular Sieve TS-1[J]. Chinese J Catal,2009,30(6):482-484(in Chinese). 刘文欢,郭鹏,苏际,等. 钛硅分子筛TS-1的酸性表征及酸催化性能[J]. 催化学报,2009,30(6):482-484.
[19] Niwa M,Katada N.New Method for the Temperature-Programmed Desorption(TPD) of Ammonia Experiment for Characterization of Zeolite Acidity:A Review[J]. Chem Rec,2014,45(6):432-455.
[20] Bagnasco G.Improving the Selectivity of NH3-TPD Measurements[J]. J Catal,1996,159(1):249-252.
[21] Hu S,Shang J,Zhang Q,et al Selective Formation of Propylene from Methanol over High-Silica Nanosheets of MFI Zeolite[J]. Appl Catal A,2012,445/446:215-220.
[22] Li W,Ma T,Zhang Y F,et al. Facile Control of Inter-crystalline Porosity in the Synthesis of Size-Controlled Mesoporous MFI Zeolites via in-Situ Converting Silica Gel into Zeolite Nanocrystals for Catalytic Cracking[J]. CrystEngComm,2015,17:5680-5689.
[23] HU Si,ZHANG Qing,YIN Qi,et al. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys-Chim Sin,2015,31(7):1374-1382(in Chinese). 胡思,张卿,尹琪,等. 甲醇制丙烯反应性能氢氧化钠-氟硅酸铵改性HZSM-5催化甲醇制丙烯[J]. 物理化学学报,2015,31(7):1374-1382.
[24] Zhang J L,Cao P,Yan H Y,et al. Synthesis of Hierarchical Zeolite Beta with Low Organic Template Content via the Steam-Assisted Conversion Method[J]. Chem Eng J,2016,291:82-93.
[25] Wu Z J,Zhao K Q,Ge S H,et al. Selective Conversion of Glycerol into Propylene:Single-Step versus Tandem Process[J]. ACS Sustainable Chem Eng,2016,4(8):4192-4207.
[26] Emdadi L,Tran D T,Wu Y,et al. BEA Nanosponge/Ultra-thin Lamellar MFI Prepared in One-Step:Integration of 3D and 2D Zeolites into a Composite for Efficient Alkylation Reactions[J]. Appl Catal A,2017,530:56-65.
[27] REN Fenfen. Pore Structure, Acidity and Benzylation of Naphthalene over Mesopores Beta Zeolite[D]. Taiyuan:Taiyuan University of Technology,2017(in Chinese). 任奋奋. 中孔Beta沸石的孔结构、酸性及其萘的苄基化催化性能研究[D]. 太原:太原理工大学,2017.
[28] XUE Bing,WU Hao,Wen Linzhi,et al. Alkylation of Toluene to p-Xylene Catalyzed by Boric Acid Modified MCM-22 Zeolite[J]. Chem Ind Eng Prog,2017,36(6):2177-2182(in Chinese). 薛冰,吴浩,文琳智,等. 硼酸改性MCM-22分子筛催化甲苯烷基化合成对二甲苯[J]. 化工进展,2017,36(6):2177-2182.
[29] Kester P M,Miller J T,Gounder R.Ammonia Titration Methods to Quantify Brønsted Acid Sites in Zeolites Substituted with Aluminum and Boron Heteroatoms[J]. Ind Eng Chem Res,2018,57(19):1081-1096.
[30] Yuta N,Takumi K,Ken-Ichi S,et al. Micropore Diffusivities of NO and NH3 in Cu-ZSM-5 and Their Effect on NH3-SCR[J]. Catal Today,2019,332:64-68.
[31] Luo J Y,Gao F,Kamasamudram K,et al. New Insights into Cu/SSZ-13 SCR Catalyst Acidity.Part I:Nature of Acidic Sites Probed by NH3 Titration[J]. J Catal,2017,348:291-299.
[32] Lin C,Janssens T V W,Skoglundh M,et al. Interpretation of NH3-TPD Profiles from Cu-CHA Using First-Principles Calculations[J]. Top Catal,2019,62:93-99.
[33] Wakabayashi F,Kondo J,Wada A,et al. FT-IR Studies of the Interaction Between Zeolitic Hydroxyl Groups and Small Molecules.1.Adsorption of Nitrogen on H-Mordenite at Low Temperature[J]. J Phys Chem,1993,94(47):10761-10768.
[34] Katada N.Analysis and Interpretation of Acidic Nature of Aluminosilicates[J]. Mol Catal,2018,458:116-126.
[35] HU Si,ZHANG Qing,GONG Yanjun,et al. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys-Chim Sin,2016,32(7):1785-1794(in Chinese). 胡思,张卿,巩雁军,等. HZSM-5分子筛在甲醇制丙烯反应中的失活与再生[J]. 物理化学学报,2016,32(7):1785-1794.
[36] Emeis C A.Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J Catal,1993,141(2):347-354.
[37] Wu Y,Zheng L,Emdadi L,et al. Tuning External Surface of Unit-Cell Thick Pillared MFI and MWW Zeolites by Atomic Layer Deposition and Its Consequences on Acid-Catalyzed Reactions[J]. J Catal,2016,337:177-187.
[38] BI Yunfei,XIA Guofu,HUANG Weiguo,et al. Study on Catalysts for Hydroisomerization-Effect of Acidic Properties[J]. Acta Petrol Sin(Petrol Process Sect),2017,33(5):873-979(in Chinese). 毕云飞,夏国富,黄卫国,等. 加氢异构化催化剂的研究——酸性能的影响[J]. 石油学报(石油加工),2017,33(5):873-979.
[39] Baertsch C D,Komala K T,Chua Y H,et al. Genesis of Brønsted Acid Sites During Dehydration of 2-Butanol on Tungsten Oxide Catalysts[J]. J Catal,2002,205(1):44-57.
[40] Macht J,Baertsch C D,May-Lozano M,et al. Support Effects on Brønsted Acid Site Densities and Alcohol Dehydration Turnover Rates on Tungsten Oxide Domains[J]. J Catal,2004,227(2):479-491.
[41] Liu H,Iglesia E.Effects of Support on Bifunctional Methanol Oxidation Pathways Catalyzed by Polyoxometallate Keggin Clusters[J]. J Catal,2003,223(1):161-169.
[42] Santiesteban J G,Vartuli J C,Han S,et al. Influence of the Preparative Method on the Activity of Highly Acidic WOx/ZrO2 and the Relative Acid Activity Compared with Zeolites[J]. J Catal,1997,168(2):431-441.
[43] Knö zinger H. Infrared Spectroscopy as a Probe of Surface Acidity[M]. Elementary Reaction Steps in Heterogeneous Catal. Springer Netherlands,1993,398:267-285.
[44] GoraMarek K,Tarach K,Choi M. 2,6-Di-Tert-Butylpyridine Sorption Approach to Quantify the External Acidity in Hierarchical Zeolites[J]. J Phys Chem C,2014,118(23):12266-12274.
[45] WANG Bin.The Acidity of Zeolites Tested by the Basic Probe Molecular with Adsorption Infrared Spectroscopy[C]. Beijing Institute of Chemical Technology Youth Scientific and Technological Papers Conference. Beijing,2008(in Chinese). 王斌. 碱性探针分子吸附红外光谱法研究分子筛的酸性[C]. 北京化工研究院青年科技论文报告会. 北京,2008.
[46] Barzetti T,Selli E,Moscotti D,et al. Pyridine and Ammonia as Probes for FTIR Analysis of Solid Acid Catalysts[J]. J Chem Soc,Faraday Trans,1996,92(8):1401-1407.
[47] Bhan A,Allian A D,Sunley G J,et al. Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls[J]. J Am Chem Soc,2007,129(16):4919-4924.
[48] Bhan A,Iglesia E.A Link Between Reactivity and Local Structure in Acid Catalysis on Zeolites[J]. Acc Chem Res,2008,41(4):559-567.
[49] Gabrienko A A,Danilova I G,et al. Direct Measurement of Zeolite Bronsted Acidity by FTIR Spectroscopy: Solid-State 1H MAS NMR Approach for Reliable Determination of the Integrated Molar Absorption Coefficients[J]. J Phys Chem C,2018,122:25386-25395.
[50] Huang J,Jiang Y,Marthala V R R,et al. Concentration and Acid Strength of Hydroxyl Groups in Zeolites La,Na-X and La,Na-Y with Different Lanthanum Exchange Degrees Studied by Solid-State NMR Spectroscopy[J]. Micropor Mesopor Mater,2007,104(1):129-136.
[51] Yin F,Blumenfeld A L,Gruver V,et al. NH3 as a Probe Molecule for NMR and IR Study of Zeolite Catalyst Acidity[J]. J Phys Chem B,1997,101(10):1824-1830.
[52] Zhao R,Zhao Z,Li S,et al. Insights into the Correlation of Aluminum Distribution and Bronsted Acidity in H-Beta Zeolites from Solid-State NMR Spectroscopy and DFT Calculations[J]. J Phys Chem Lett,2017,8(10):2323-2327.
[53] GAO Xiuzhi,ZHANG Yu,WANG Xiumei,et al. Solid State NMR Study on Acidic Central Structure and Acidity ofDealuminized HY Zeolite[J]. Acta Petrol Sin(Petrol Process Sect),2012,28(2):180-187(in Chinese). 高秀枝,张翊,王秀梅,等. 脱铝HY分子筛酸中心结构与酸性的固体NMR研究[J]. 石油学报(石油加工),2012,28(2):180-187.
[54] Holland G P,Cherry B R,Alam T M.15N Solid-State NMR Characterization of Ammonia Adsorption Environments in 3A Zeolite Molecular Sieves[J]. J Phys Chem B,2004,108(42):16420-16426.
[55] Holland G P,Alam T M.Location and Orientation of Adsorbed Molecules in Zeolites from Solid-State REAPDOR NMR[J]. Phys Chem Chem Phys,2005,7(8):1739-1742.
[56] Chu Y Y,Yu Z W,Zheng A M,et al. Acidic Strengths of Bronsted and Lewis Acid Sites in Solid Acids Scaled by 31P NMR Chemical Shifts of Adsorbed Trimethylphosphine[J]. J Phys Chem C,2011,115(15):7660-7667.
[57] Karra M D,Sutovich K J,Mueller K T.NMR Characterization of Bronsted Acid Sites in Faujasitic Zeolites with Use of Perdeuterated Trimethylphosphine Oxide[J]. J Am Chem Soc,2002,124(6):902-903.
[58] Zhao Q,Chen W H,Huang S J,et al. Discernment and Quantification of Internal and External Acid Sites on Zeolites[J]. J Phys Chem B,2002,106(17):4462-4469.
[59] Zheng A,Zhang H,Lu X,et al. Theoretical Predictions of 31P NMR Chemical Shift Threshold of Trimethylphosphine Oxide Absorbed on Solid Acid Catalysts[J]. J Phys Chem B,2008,112(15):4496-4505.
[60] YU Shanqing,TIAN Huiping.Acidity characterization of Rare-Earth-Exchanged Y Zeolite Using 31P MAS NMR[J]. Chinese J Catal,2014,35(8):1318-1328(in Chinese). 于善青,田辉平. 31P MAS NMR固体核磁共振研究稀土改性Y分子筛的酸性[J]. 催化学报,2014,35(8):1318-1328.
[1] 徐仁顺, 郭新闻, 王桂茹, 刘靖, 张竹霞. 合成2-乙基蒽醌的新方法[J]. 应用化学, 2006, 23(7): 812-814.
[2] 霍丽华, 王旭, 赵经贵, 马淑杰. 钛酸盐(钴、镓)沸石分子筛的合成与表征[J]. 应用化学, 2000, 17(3): 322-324.
[3] 谢文华, 叶兴凯, 杨向光, 吴越. 固体杂多酸盐催化性能 Ⅰ.钨磷、钨硅杂多酸碱金属盐的合成、表征和催化酯化反应[J]. 应用化学, 1996, 0(2): 37-40.
[4] 段雪, 孙鹏, 朱娅玲, 王作新. 环已胺在沸石分子筛上的吸脱附行为研究[J]. 应用化学, 1992, 0(5): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn