Please wait a minute...
应用化学
今天是
应用化学  2020, Vol. 37 Issue (1): 61-68    DOI: 10.11944/j.issn.1000-0518.2020.01.190161
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳载高分散钯纳米粒子的制备及催化Suzuki反应
刘明辉,刘盈岑,吕荣文()
大连理工大学,精细化工国家重点实验室 辽宁 大连 116024
Preparation of Carbon-Supported Highly Dispersed Palladium Nanoparticles and Their Performance for Suzuki Reaction
LIU Minghui,LIU Yingcen,Lü Rongwen()
State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China
全文: PDF(2111 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

利用三聚氰胺甲醛预聚物中N原子与Pd2+的相互作用,将Pd2+化学锚定在预聚物中;并以二氧化硅水凝胶为造孔剂、2,4-二氨基苯磺酸为预聚物缩合促进剂,在水溶液中制备出锚定了Pd2+的胶体纳米球;再经摩尔分数5%氢气焙烧、HF腐蚀,得到Pd质量分数为1.37%、平均粒径为(2.4±0.87) nm的碳载高分散Pd纳米粒子催化剂Pd@C。 将其应用于Suzuki反应,在加入Pd与碘苯物质的量比为1:100的催化剂时,反应5 min收率为99.3%,且经8次循环后活性未降低,表现出良好的催化效果和重复使用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘明辉
刘盈岑
吕荣文
关键词 三聚氰胺钯纳米粒子碳载体Suzuki反应    
Abstract

Firstly, Pd2+ ions are anchored on melamine-formaldehyde prepolymer by the coordination with N atoms on the prepolymer. Then the colloidal nanospheres grow on silica hydrogel via the simultaneous condensation reaction accelerated by 2,4-diaminobenzenesulfonic acid. Finally, the carbon-supported highly dispersed palladiumPd@C catalyst is obtained after calcination in an atmosphere of 5%(molar fraction) H2 and 95%(molar fraction) N2 gases, followed by being treated with 5% HF solution. The prepared highly dispersed Pd nanoparticles with a loading amount of 1.37%(mass fraction) have an average diameter of (2.4±0.87) nm, and the catalytic performance of Pd@C has been further evaluated by Suzuki reaction. With the addition of molar ratio 1:100 catalyst, Pd@C performs both good catalytic activity with a yield of 99.3% achieved within 5 minutes, and excellent durability after 8 cycles.

Key wordsmelamine    palladium nanoparticles    carbon-support    Suzuki reaction
收稿日期: 2019-05-31           接受日期: 2019-05-31
基金资助:国家自然科学基金联合基金(U1608223)、国家自然科学基金(21576044,21536002,21576039)和国家自然科学基金创新研究群体科学基金(21421005)资助
通讯作者: 吕荣文     E-mail: lurw@dlut.edu.cn
引用本文:   
刘明辉, 刘盈岑, 吕荣文. 碳载高分散钯纳米粒子的制备及催化Suzuki反应[J]. 应用化学, 2020, 37(1): 61-68.
LIU Minghui, LIU Yingcen, Lü Rongwen. Preparation of Carbon-Supported Highly Dispersed Palladium Nanoparticles and Their Performance for Suzuki Reaction. Chinese Journal of Applied Chemistry, 2020, 37(1): 61-68.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2020.01.190161      或      http://yyhx.ciac.jl.cn/CN/Y2020/V37/I1/61
图1Pd@C形成过程示意图
Fig.1Schematic illustration for the formation mechanism of Pd@C
图2Pd-SiO2@C (A)和Pd@C(B)材料SEM照片;Pd@C材料TEM照片(C,D)(D中插图为Pd纳米粒子粒径分布图)
Fig.2SEM images of Pd-SiO2@C(A) and Pd@C(B); TEM images of Pd@C(C,D) (The inset of D shows the particle size distribution of Pd nanoparticles)
图3Pd@C材料的XPS光谱宽扫描光谱(A)及C 1s (B)、N1s (C)和Pd 3d (D)的元素高分辨率光谱
Fig.3XPS survey spectra of Pd@C(A) and high resolution spectra for the elements of C1s(B), N1s(C), and Pd3d(D)
图4Pd@C材料的元素分布图像: Pd@C材料的暗场扫描透射电子显微镜照片(STEM-DF)(A)、C元素(B)、N元素(C)和 Pd元素(D)
Fig.4Element mapping images of Pd@C: STEM-DF of Pd@C(A), C(B), N(C)and Pd(D)
图5Pd@C材料XRD谱图
Fig.5XRD patterns of Pd@C
图6Pd@C材料的氮气吸附-脱附曲线及孔径分布图
Fig.6Nitrogen adsorption-desorption isotherms of Pd@C(The inset shows the pore size distribution of Pd@C)
Scheme 1Suzuki cross-coupling reaction of iodobenzene with phenyl boronic acid
图7反应时间对收率的影响(A)和Pd@C催化Suzuki反应循环性能图(B)
Fig.7Effect of reaction time on yield(A) and cyclability tests of the Pd@C for catalytic Suzuki reaction(B)
B.The yield was measured after 5 min reaction
[1] Tsuji J.Palladium Reagents and Catalysts[M]. New Perspectives for the 21st Century;Wiley:West Sussex,U.K.,2004.
[2] Malleron J L,Fiaud J C,Legros J Y, Handbook of Palladium-catalyzed Organic Reactions[M]. Academic Press:London,2000.
[3] Burda C,Chen X B,Narayanan R,et al. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem Rev,2005,105(4):1025-1102.
[4] Yuan B Z,Pan Y Y,Li Y W,et al. A Highly Active Heterogeneous Palladium Catalyst for the Suzuki Miyaur and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media[J]. Angew Chem Int Ed,2010,49(24):4054-4058.
[5] Reetz M T, Westermann E.Phosphane-free Palladium-Catalyzed Coupling Reactions:The Decisive Role of Pd Nanoparticles[J]. Angew Chem Int Ed,2000,39(1):165-168.
[6] Jadhav S N,Kumbhar A S,Rodeb C V,et al. Ligand-free Pd Catalyzed Cross-coupling Reactions in an Aqueous Hydrotropic Medium[J]. Green Chem,2016,18(7):1898-1911.
[7] Wan X K,Guan Z J,Wang Q M, Homoleptic Alkynyl-Protected Gold Nanoclusters:Au44(PhC/C)28 and Au36(PhC/C)24[J]. Angew Chem Int Ed,2017,56(38):11494-11497.
[8] Mitsudome T,Yamamoto M,Maeno Z,et al. One-Step Synthesis of Core-Gold/Shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes[J]. J Am Chem Soc,2015,137(42):13452-13455.
[9] Wang T,Yuan X,Li S R,et al. CeO2-Modified Au@SBA-15 Nanocatalysts for Liquid-Phase Selective Oxidation of Benzyl Alcohol[J]. Nanoscale,2015,7(7):7593-7602.
[10] Lin X J,Zhong A Z,Sun Y B,et al. In Situ Encapsulation of Pd Inside the MCM-41 Channel[J]. Chem Commun,2015,51(35):7482-7485.
[11] Zhong A Z,Zou W,Mao W X,et al. A Continuous Etching Process for Highly-active Pd Nanoclusters and Their in Situ Stabilization[J]. RSC Adv,2014,4(45):23637-23641.
[12] Li C L,Zhang Q H,Wang Y,et al. Preparation, Characterization and Catalytic Activity of Palladium Nanoparticles Encapsulated in SBA-15[J]. Catal Lett,2008,120(1/2):126-136.
[13] Cargnello M,Delgado Jaen J J,Hernandez Garrido J C,et al. Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3[J]. Science,2012,337(6095):713-717.
[14] Jin Z,Xiao M D,Bao Z H,et al. A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles[J]. Angew Chem Int Ed,2012,51(26):6406-6410.
[15] Liu R,Priestley R D.Rational Design and Fabrication of Core shell Nanoparticles Through a One-Step/Pot Strategy[J]. J Mater Chem A,2016,4(18):6680-6692.
[16] Zhu C Z,Li H,Fu S F,et al. Highly Efficient Nonprecious Metal Catalysts Towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures[J]. Chem Soc Rev,2016,45(3):517-531.
[17] White R J,Luque R,Budarin V L,et al. Supported Metal Nanoparticles on Porous Materials, Methods and Applications[J]. Chem Soc Rev,2009,38(2):481-494.
[18] Haruta M,Tsubota S,Kobayashi T,et al. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4[J]. J Catal,1993,144(1):175-192.
[19] Jeong U,Joo J B,Kim Y.Au Nanoparticle-Embedded SiO2-Au@SiO2 Catalysts with Improved Catalytic Activity, Enhanced Stability to Metal Sintering and Excellent Recyclability[J]. RSC Adv,2015,5(69):55608-55618.
[20] Haas K L,Franz K J.Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology[J]. Chem Rev,2009,109(10):4921-4960.
[21] Yang J,Sargent E H,Kelley S O,et al. A General Phase-Transfer Protocol for Metal Ions and Its Application in Nanocrystal Synthesis[J]. Nat Mater,2009,8:683-689.
[22] Ogasawara S,Kato S.Palladium Nanoparticles Captured in Microporous Polymers:A Tailor-Made Catalyst for Heterogeneous Carbon Cross-Coupling Reactions[J]. J Am Chem Soc,2010,132(13):4608-4613.
[23] Liu M H,Liu Y C,Gao Z M,et al. Nitrogen and Sulfur Co-Doped Carbon Nanospheres for Highly Efficient Oxidation of Ethylbenzene[J]. New J Chem,2018,42(19):15962-15967.
[24] Wu Y S,Li Y,Qin L,et al. Monodispersed or Narrow-Dispersed Melamine Formaldehyde Resin Polymer Colloidal Spheres: Preparation, Size-Control, Modification, Bioconjugation and Particle Formation Mechanism[J]. J Mater Chem B,2013,1(2):204-212.
[25] Zhang H W,Noonan O,Huang X D,et al. Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes[J]. ACS Nano,2016,10(4):4579-4586.
[26] Wang G,Sun Y H,Li D B,et al. Controlled Synthesis of N-Doped Carbon Nanospheres with Tailored Mesopores Through Self-assembly of Colloidal Silica[J]. Angew Chem Int Ed,2015,54(50):15191-15196.
[27] Kim S Y,Suh W H,Choi J H,et al.Template-Free Synthesis of High Surface Area Nitrogen-Rich Carbon Microporous Spheres and Their Hydrogen Uptake Capacity[J]. J Mater Chem A,2014,2(7):2227-2232.
[28] Zhang D L,Zhaorigetu B,Bao Y S.Supported Palladium Nanoparticles Catalyzed Ortho-directed C-C Coupling Reaction via a Pd0/PdII/PdIV Catalytic Cycle[J]. J Phys Chem C,2015,119(35):20426-20432.
[29] Budarin V L,Clark J H,Luque R,et al. Palladium Nanoparticles on Polysaccharide-Derived Mesoporous Materials and Their Catalytic Performance in C—C Coupling Reactions[J]. Green Chem,2008,10(4):382-387.
[1] 朱德钦, 生瑜, 郑守扬, 童庆松. 三聚氰胺聚磷酸盐/季戊四醇配比、协效剂组及表面改性对聚丙烯基木塑复合材料的膨胀阻燃影响[J]. 应用化学, 2019, 36(6): 649-657.
[2] 郭威凤, 许晋芳, 刘锐玲, 赵正保, 郭跃伟. 汉防己甲素衍生物的合成及其生物活性[J]. 应用化学, 2017, 34(7): 789-794.
[3] 陈梓庭, 梁营. 非通孔多孔氧化铝基底上原位生成Pd纳米材料的制备及应用[J]. 应用化学, 2017, 34(6): 705-711.
[4] 林强, 郭姝宜, 黄毅萍, 许戈文, 鲍俊杰, 程芹. 高醚化三聚氰胺甲醛树脂交联水性聚氨酯的制备与表征[J]. 应用化学, 2016, 33(10): 1154-1160.
[5] 周宇, 何媛, 周文俊. 果胶对钯的吸附及其在有机合成中的应用[J]. 应用化学, 2015, 32(12): 1402-1409.
[6] 费瑶, 郭涵, 奚焕祥, 陈婉熠, 蔡琳熠, 王爱军, 冯九菊. 2-硫代巴比妥酸修饰金纳米探针高灵敏比色检测三聚氰胺[J]. 应用化学, 2014, 31(04): 496-501.
[7] 徐思远, 雷平, 晋冠平. 三聚氰胺基螯合树脂/碳纳米管修饰充蜡石墨电极阳极溶出伏安法测定铅和镉[J]. 应用化学, 2014, 31(02): 206-211.
[8] 刘玉楠, 张朝晖, 陈星, 陈红军, 饶维, 蔡蓉. 三聚氰胺磁性印迹固相萃取材料的制备及其应用[J]. 应用化学, 2013, 30(10): 1222-1230.
[9] 张毅, 韩晓燕, 赵培莉, 郭炜毅, 张政朴. 磺化改性聚四氟乙烯纤维固相萃取-高效液相色谱联用测定奶制品中的三聚氰胺[J]. 应用化学, 2011, 28(04): 448-453.
[10] 薛蔓, 张士真, 吴玉峰, 刘剑, 崔元臣. 木质素-四乙烯五胺负载钯配合物的制备及对Suzuki反应的催化性能[J]. 应用化学, 2010, 27(07): 787-791.
[11] 赵晓伟, 赵涛, 张纪伟, 张磊, 崔元臣. 聚氯乙烯-多乙烯多胺负载钯配合物对Suzuki反应的催化性能[J]. 应用化学, 2006, 23(7): 815-817.
[12] 袁青梅, 杨红卫, 张发广, 王兴, 郑保忠. 原位聚合法制备鱼藤酮微胶囊[J]. 应用化学, 2006, 23(4): 382-385.
[13] 张泽江, 梅秀娟, 冯良荣, 邱发礼. 三聚氰胺聚磷酸盐阻燃剂的合成与表征[J]. 应用化学, 2003, 20(11): 1035-1038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn