Please wait a minute...
应用化学
今天是
应用化学  2019, Vol. 36 Issue (1): 65-74    DOI: 10.11944/j.issn.1000-0518.2019.01.180040
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
泡沫状氮化碳的制备及其可见光分解水产氢性能
李靖娥,陈烽,兰富军,赵才贤()
湘潭大学化工学院 湖南 湘潭 411105
Foam-Like Graphitic Carbon Nitride: Synthesis and Visible-Light-Driven Photocatalytic Activity for Hydrogen Evolution
LI Jinge,CHEN Feng,LAN Fujun,ZHAO Caixian()
Chemical Engineering College,Xiangtan University,Xiangtan,Hu'nan 411105,China
全文: PDF(2163 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

以三聚氰胺为前驱体,价格低廉、来源广泛的海泡石作为硬模板,制备出具有特殊空腔结构的泡沫状氮化碳。 通过透射电子显微镜、X射线粉末衍射、傅里叶变换红外光谱、N2吸附-脱附、紫外可见漫反射光谱及荧光光谱等手段对样品的表面形貌和结构等物理性质进行表征,以光解水产氢性能考察其光催化活性,并通过电化学测试手段考察其光生电荷传输和分离情况。 结果表明,聚多巴胺能起到粘接剂作用,改善了前驱体与模板的结合,制备出的泡沫状氮化碳具有更大的比表面积;随模板用量增加,氮化碳的比表面积增大,当聚多巴胺改性海泡石与三聚氰胺质量比为2:1时,泡沬状氮化碳比表面积可达389.2 m2/g,其可见光产氢速率约为1061.87 μmol/(g·h),较体相氮化碳和未经多巴胺改性海泡石制备的氮化碳分别提高了7和2.6倍。 这表明大比表面积的泡沫状氮化碳为光催化反应提供了更多的活性位点,改善了多相光催化反应的传质扩散过程,提高了光生电子-空穴的分离效率,其特殊的空腔结构能有效地提高光的利用率,从而提高其光催化活性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李靖娥
陈烽
兰富军
赵才贤
关键词 泡沫状氮化碳可见光产氢海泡石    
Abstract

The foam-like graphitic carbon nitride(g-C3N4) was synthesized by using melamine as the raw material and cheap sepiolite as the hard template, respectively. The as-prepared samples were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), Fourier transform infrared(FT-IR) spectrometry, Brunauer-Emmett-Teller(BET) method, ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS), photoluminescence(PL) spectroscopy and electrochemical measurements, and the photocatalytic activity was evaluated by visible light driven hydrogen evolution. The results show that polydopamine can act as adhesives,which can improve the combined degree between the template and melamine, leading to the increase of the specific surface area of foam-like graphitic carbon nitride. Furthermore, the specific surface area of the obtained sample increases with the increase of polydopamine-modified sepiolite, when the mass ratio of polydopamine-modified sepiolite and melamine is 2:1, the specific surface area of the foam like g-C3N4 is as high as 389.2 m2/g and the visible light driven H2 evolution rate can reach up to 1061.87 μmol/(g·h), which is ~7 times greater than that of bulk g-C3N4(151.24 μmol/(g·h)) and 2.6 times higher than that of g-C3N4 synthesized by unmodified sepiolite, respectively. This indicates that the foam-like g-C3N4 with a large surface area can provide more active sites and improve the diffusion process of multi-phase photocatalytic reaction, enhancing the separation efficiency of photogenerated electrons and holes. Additionally, the unique cavity structure can also effectively improve the utilization of light, leading to a significant improvement in the photocatalytic performance.

Key wordsfoam-like graphitic carbon nitride    visible light driven hydrongen evolution    sepiolite
收稿日期: 2018-02-08           接受日期: 2018-05-26
基金资助:国家自然科学基金-石油化工联合基金项目(U1462121)、湘潭大学海泡石专项(2015EP10)项目资助
通讯作者: 赵才贤     E-mail: caixianzhao74@gmail.com
引用本文:   
李靖娥, 陈烽, 兰富军, 赵才贤. 泡沫状氮化碳的制备及其可见光分解水产氢性能[J]. 应用化学, 2019, 36(1): 65-74.
LI Jinge, CHEN Feng, LAN Fujun, ZHAO Caixian. Foam-Like Graphitic Carbon Nitride: Synthesis and Visible-Light-Driven Photocatalytic Activity for Hydrogen Evolution. Chinese Journal of Applied Chemistry, 2019, 36(1): 65-74.
链接本文:  
http://yyhx.ciac.jl.cn/CN/10.11944/j.issn.1000-0518.2019.01.180040      或      http://yyhx.ciac.jl.cn/CN/Y2019/V36/I1/65
图1不同氮化碳的透射电子显微镜照片
Fig.1TEM images of different graphitic carbon nitrides
A.BCN; B.foam-CN-0.3; C.foam-CN-1; D.foam-CN-2; E.foam-CN-2(without DPA)
sample Surface area/(m2·g-1) Pore volume/(cm3·g-1) Pore diameter/nm
BCN 19.14 0.074 -
foam-CN-0.3 49.30 0.141 2.45
foam-CN-0.6 158.55 0.322 2.19
foam-CN-1 249.27 0.487 2.73
foam-CN-1.3 338.58 0.501 2.78
foam-CN-2 389.20 0.651 2.27
foam-CN-2(without DPA) 78.14 0.205 2.54
表1不同催化剂的比表面积、孔体积和平均孔径
Table 1Specific surface area,pore volume and average pore size of different samples
图2氮气等温吸附脱附曲线图及样品foam-CN-2的孔径分布图(插图)
Fig.2N2 adsorption-desorption isotherms and pore size distribution(inset) of foam-CN-2
图3不同模板比制备的氮化碳的XRD图
Fig.3XRD patterns of g-C3N4 prepared by different proportions of templates
图4Sep、BCN及foam-CN-2的红外光谱图
Fig.4FT-IR Spectra of Sep, BCN and foam-CN-2
图5foam-CN-2光沉积质量分数3%Pt的XPS全谱(A)及C1s(B)、N1s(C)、Pt4f(D)的高分辨图谱
Fig.5XPS survey spectra(A), high-resolution spectra of the C1s(B), N1s(C), Pt4f(D) of the 3%(mass percent)Pt@foam-CN-2
图6BCN(a)和foam-CN-2(b)的(αhv)nhv的关系曲线图及紫外-可见漫反射光谱图(插图)
Fig.6The plots of (αhv)n versus hv and UV-Vis diffuse reflectance spectra(inset) of BCN(a) and foam-CN-2(b)
图7BCN、foam-CN-2和foam-CN-2(without DPA)的稳态荧光图
Fig.7PL spectra of BCN, foam-CN-2 and foam-CN-2(without DPA)
图8BCN、foam-CN-2(without DPA)和foam-CN-2的光解水产氢性能(A);不同模板与海泡石的比例制得的泡沫状氮化碳的产氢速率图(B)
Fig.8Photocatalytic activities of BCN, foam-CN-2(without DPA) and foam-CN-2(A); the hydrogen evolution rate over different foam-CN-X samples prepared by different molar ratio of sepiolite to melamine(B)
图9样品foam-CN-2在可见光下照射的光解水产氢稳定性测试
Fig.9Stability testing of foam-CN-2 for photocatalytic hydrogen evolution reaction under visible light irradiation
图10foam-CN-2光催化产氢反应前后的XRD(A)和FT-IR图(B)
Fig.10XRD(A) and FT-IR(B) patterns of foam-CN-2 before and after the photocatalytic hydrogen evolution reactions
图11foam-CN-2的表观量子效率及DRS图谱
Fig.11Wavelength-dependent AEQ and DRS spectrum of foam-CN-2
图12泡沫状氮化碳(a)和体相氮化碳(b)的开光/避光时间-电流图
Fig.12Light/Dark time-current plots of foam-CN-2(a) and BCN(b)
图13暗态(A)和可见光照(B)下体相氮化碳和泡沫状氮化碳的交流阻抗图
Fig.13Nyquist plots of BCN and foam-CN-2 in the dark(A) and under visible light illumination(B)
[1] Gong Y,Wang J,Wei Z,et al. Combination of Carbon Nitride and Carbon Nanotubes:Synergistic Catalysts for Energy Conversion[J]. ChemSusChem,2014,7(8):2303-2309.
[2] Dai L,Dong W C,Baek J B,et al. Carbon Nanomaterials for Advanced Energy Conversion and Storage[J]. Small,2012,8(8):1122-1122.
[3] Fujishima A,Honda K.Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238(5358):37-38.
[4] Zhao C,Luo H,Chen F,et al. A Novel Composite of TiO2 Nanotubes with Remarkably High Efficiency for Hydrogen Production in Solar-Driven Water Splitting[J]. Energy Environ Sci,2014,7(5):1700-1707.
[5] Liu S,Yin K,Ren W,et al. Tandem Photocatalytic Oxidation of Rhodamine B over Surface Fluorinated Bismuth Vanadate Crystals[J]. J Mater Chem,2012,22(34):17759-17767.
[6] Ong W J,Tan L L,Ng Y H,et al. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation:Are We a Step Closer to Achieving Sustainability?[J]. Chem Rev,2016,116(12):7159-7329.
[7] Jang E S,Won J H,Hwang S J,et al. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity[J]. Adv Mater,2006,18(24):3309-3312.
[8] Wang X,Liao M,Zhong Y,et al. ZnO Hollow Spheres with Double-Yolk Egg Structure for High-Performance Photocatalysts and Photodetectors[J]. Adv Mater,2012,24(25):3421-3425.
[9] Wu S,Cao H,Yin S,et al. Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals[J]. J Phys Chem C,2009,113(41):17893-17898.
[10] Liu S,Huang G,Yu J,et al. Porous Fluorinated SnO2 Hollow Nanospheres:Transformative Self-assembly and Photocatalytic Inactivation of Bacteria[J]. ACS Appl Mater Interfaces,2014,6(4):2407-2414.
[11] And S W C,Zhu Y J. Hierarchically Nanostructured α-Fe2O3 Hollow Spheres:Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment[J]. J Phys Chem C,2008,112(16):6253-6257.
[12] Zhou X M,Xu Q L,Lei W Y.Origin of Tunable Photocatalytic Selectivity of Well-Defined α-Fe2O3 Nanocrystals[J]. Small,2014,10(4):674-679.
[13] Liu S,Yin K,Ren W,et al. Tandem Photocatalytic Oxidation of Rhodamine B over Surface Fluorinated Bismuth Vanadate Crystals[J]. J Mater Chem,2012,22(34):17759-17767.
[14] Cao S W,Yin Z,Barber J,et al. Preparation of Au-BiVO4 Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts[J]. ACS Appl Mater Interfaces,2012,4(1):418-423.
[15] Huang W C,Lyu L M,Yang Y C,et al. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity[J]. J Am Chem Soc,2012,134(2):1261-1267.
[16] An X,Li K,Tang J.Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2[J]. ChemSusChem,2014,7(4):1086-1093.
[17] Xiang Q,Cheng B,Yu J.Hierarchical porous CdS Nanosheet-Assembled Flowers with Enhanced Visible-Light Photocatalytic H2-Production Performance[J]. Appl Catal B,2013,138(14):299-303.
[18] She X,Liang L,Ji H,et al. Template-free Synthesis of 2D Porous Ultrathin Nonmetal-doped g-C3N4, Nanosheets with Highly Efficient Photocatalytic H2, Evolution from Water under Visible Light[J]. Appl Catal B,2016,187(5):144-153.
[19] Zheng Y,Lin L,Ye X,et al. Helical Graphitic Carbon Nitrides with Photocatalytic and Optical Activities[J]. Angew Chem,2014,53(44):11926.
[20] Gao X C,Jiao X J,Zhang L C,et al. Cosolvent-free Nanocasting Synthesis of Ordered Mesoporous g-C3N4 and Its Remarkable Photocatalytic Activity for Methyl Orange Degradation[J]. RSC Adv,2015,5(94):76963-76972.
[21] Sun J,Zhang J,Zhang M,et al. Bioinspired Hollow Semiconductor Nanospheres as Photosynthetic Nanoparticles[J]. Nat Commun,2012,3(4):1139.
[22] Ansari M B,Min B H,Mo Y H,et al. CO2 Activation and Promotional Effect in the Oxidation of Cyclic Olefins over Mesoporous Carbon Nitrides[J]. Green Chem,2011,13(3):1416-1421.
[23] Ansari M B,Jin H,Parvin M N,et al. Mesoporous Carbon Nitride as a Metal-Free Base Catalyst in the Microwave Assisted Knoevenagel Condensation of Ethylcyanoacetate with Aromatic Aldehydes[J]. Catal Today,2012,185(1):211-216.
[24] Chen X,Jun Y S,Takanabe K,et al. Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride:A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light[J]. Chem Mater,2009,21(18):4093-4095.
[25] Zhang J,Guo F,Wang X.An Optimized and General Synthetic Strategy for Fabrication of Polymeric Carbon Nitride Nanoarchitectures[J]. Adv Funct Mater,2013,23(23):3008-3014.
[26] Li X H,Zhang J,Chen X,et al. Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement:Promotion of Crystallinity on Photocatalytic Conversion[J]. Chem Mater,2011,23(19):4344-4348.
[27] CHEN Yan,LIU Haibo.Construction and Photocatalytic Performance of Ultrathin Graphitic Carbon Nitride Nanosheets[J]. Chinese J Inorg Chem,2017,33(12):2255-2261(in Chinese). 陈艳,刘海波. 超薄石墨相氮化碳纳米片的构建及其光催化作用[J]. 无机化学学报,2017,33(12):2255-2261.
[28] Liu Q,Chen T,Guo Y,et al. Grafting Fe(Ⅲ) Species on Carbon Nanodots/Fe-doped g-C3N4, via Interfacial Charge Transfer Effect for Highly Improved Photocatalytic Performance[J]. Appl Catal B,2017,205:173-181.
[29] Cui Y,Ding Z,Fu X,et al . Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis[J]. Angew Chem,2012,124(47):11814-11818.
[30] Xu H,Yan J,She X,et al. Graphene-Analogue Carbon Nitride:Novel Exfoliation Synthesis and Its Application in Photocatalysis and Photoelectrochemical Selective Detection of Trace Amount of Cu2+[J]. Nanoscale,2014,6(3):1406-1415.
[31] Chang Y,Liu Z,Fu Z,et al. Preparation and Characterization of One-Dimensional Core-Shell Sepiolite/Polypyrrole Nanocomposites and Effect of Organic Modification on the Electrochemical Properties[J]. Ind Eng Chem Res,2014,53(1):38-47.
[32] She X,Xu H,Xu Y,et al. Exfoliated Graphene-Like Carbon Nitride in Organic Solvents:Enhanced Photocatalytic Activity and Highly Selective and Sensitive Sensor for the Detection of Trace Amounts of Cu2+[J]. J Mater Chem A,2014,2(8):2563-2570.
[33] Li J,Shen B,Hong Z,et al. A Facile Approach to Synthesize Novel Oxygen-Doped g-C3N4 with Superior Visible-Light Photoreactivity[J]. Chem Commun,2012,48(98):12017-12019.
[34] Li H J,Sun B W,Sui L,et al. Preparation of Water-Dispersible Porous g-C3N4 with Improved Photocatalytic Activity by Chemical Oxidation[J]. Phys Chem Chem Phys,2015,17(5):3309-3315.
[35] Yang S,Gong Y,Zhang J,et al. ChemInform Abstract:Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution under Visible Light[J]. Adv Mater,2013,25(17):2452-2456.
[36] Zhang J,Zhang M,Zhang G,et al. Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis[J]. ACS Catal,2012,2(2):940-948.
[37] Onoe T,Iwamoto S,Inoue M.Synthesis and Activity of the Pt Catalyst Supported on CNT[J]. Catal Commun,2007,8(4):701-706.
[38] Liu C,Huang H,Ye L,et al. Intermediate-Mediated Strategy to Horn-like Hollow Mesoporous Ultrathin g-C3N4 Tube with Spatial Anisotropic Charge Separation for Superior Photocatalytic H2 Evolution[J]. Nano Energy,2017,10(41):738-748.
[39] Sureshkumar,Manthiriyappan,Siswanto,et al. Antibacterial and Biocompatible Surfaces Based on Dopamine Autooxidized Silver Nanoparticles[J]. J Polym Sci Part B:Polym Phys,2013,51(4):303-310.
[40] Hu H,Yu B,Ye Q,et al. Modification of Carbon Nanotubes with a Nanothin Polydopamine Layer and Polydimethylamino-ethyl Methacrylate Brushes[J]. Carbon,2010,48(8):2347-2353.
[41] Zhang J,Zhang M,Yang C,et al. Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface[J]. Adv Mater,2014,26(24):4121-4126.
[42] Xie Y B.Photoelectrochemical Reactivity of a Hybrid Electrode Composed of Polyoxophosphotungstate Encapsulated in Titania Nanotubes[J]. Adv Funct Mater,2010,16(14):1823-1831.
[1] 李靖娥, 陈烽, 兰富军, 赵才贤. 泡沫状氮化碳的制备及其可见光分解水产氢性能[J]. 应用化学, 2019, 36(1): 0-0.
[2] 金胜明, 阳卫军, 唐谟堂. 丙烯氨氧化Mo-Bi-Fe-P/海泡石负载型催化剂的研究[J]. 应用化学, 2002, 19(2): 168-172.
[3] 陈昭平, 罗来涛, 李永绣, 尹晶海, 徐昂, 李凤仪. 酸处理对海泡石的表面及其吸附Pb(Ⅱ)、Cd(Ⅱ)的影响[J]. 应用化学, 1999, 16(5): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: yyhx@ciac.ac.cn