应用化学 ›› 2018, Vol. 35 ›› Issue (9): 1126-1132.DOI: 10.11944/j.issn.1000-0518.2018.09.180162

• 综合评述 • 上一篇    下一篇

二氧化钛多孔材料及其性能研究进展

苏娟,陈接胜()   

  1. 上海交通大学化学化工学院 上海 200240
  • 收稿日期:2018-05-08 接受日期:2018-05-23 出版日期:2018-09-01 发布日期:2018-08-06
  • 通讯作者: 陈接胜

Research Progress on Porous Titania Materials and Their Performances

SU Juan,CHEN Jiesheng()   

  1. School of Chemistry and Chemical Engineering,Shanghai Jiaotong University,Shanghai 200240,China
  • Received:2018-05-08 Accepted:2018-05-23 Published:2018-09-01 Online:2018-08-06
  • Contact: CHEN Jiesheng
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.21673140, No.21720102002, No.21331004)

摘要:

二氧化钛(TiO2)多孔材料由于具有优异的物理化学性质,在催化、能源、传感等领域展现了重要的研究价值和应用潜力。 TiO2的多孔结构特别在一些涉及异相反应的应用(如异相催化、气敏等)中具有重要的优势,如丰富的传质通道和表面活性位点、可调变的孔尺寸等。 目前,多孔TiO2功能材料的开发和优化研究正在不断推进其工业化应用的进程。 本文围绕多孔TiO2的几个优势应用领域(光催化、光生电子存储和气敏)的研究进展,从结构和缺陷设计出发介绍和讨论性能调控策略。 本文还特别介绍了本课题组通过光诱导合成法开发的一系列多孔TiO2基功能材料,并对相关性能研究领域的关键问题进行了分析和展望。

关键词: 多孔二氧化钛, 光催化, 光生电子存储, 气敏, 性能

Abstract:

Porous titania(TiO2) materials have important values and potentials in the fields of catalysis, energy, sensing, etc., due to their outstanding physical and chemical properties. In some applications associated with heterogeneous reactions, porous structures of TiO2 are advantageous because they have rich channels for mass transfer and surface active sites with tunable pore sizes. Nowadays, porous TiO2 materials are constantly developed and optimized in order to promote their industry applications. This review focuses on the research progress of porous TiO2 and their applications in photocatalysis, photogenerated electron storage, and gas sensing, in which the performance regulated through the design of structures and defects are introduced and discussed. Our research work about a series of porous TiO2 functional materials based on photochemical synthesis is specially introduced. Finally, the key issues and development prospects of porous TiO2 and their performances are also discussed.

Key words: porous titania, photocatalysis, photogenerated electron storage, gas sensing, performances