Please wait a minute...
应用化学  2018, Vol. 35 Issue (4): 369-380    DOI: 10.11944/j.issn.1000-0518.2018.04.170382
  综合评述 本期目录 | 过刊浏览 | 高级检索 |
a武汉理工大学 材料复合新技术国家重点实验室
b武汉理工大学 材料科学与工程学院 武汉 430070
Progress of Metal Oxide and Metal-Organic Framework Composite Materials
ZHANG Panb,ZHOU Kuib,CHAEMCHUEN Somboonab,CHEN Chenga,VERPOORT Francisab*()
aState Key Laboratory of Materials Synthesis and Processing
bSchool of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China
全文: PDF(2768 KB)   HTML
输出: BibTeX | EndNote (RIS)      

金属有机骨架(Metal-Organic Framework,MOF)复合材料是一种新型功能性材料,其中金属氧化物@MOF复合材料因结合了金属氧化物和MOFs的许多特性而受到人们的广泛关注,成为近年来MOFs材料研究的一个重要方向。 本文综述了金属氧化物@MOF复合材料制备方法的研究进展,主要包括外延生长法、气相沉积法、模板法等,并分析了它们各自的优缺点;概述了金属氧化物@MOF复合材料在催化、传感、生物医药、吸附与分离方面的具体应用性能,以及在电化学研究领域的潜在应用;并提出今后金属氧化物@MOF复合材料研究的主要方向是开发简单高效的制备方法、选取新功能性金属氧化物以及探索复合材料的其它新型结构,以拓展其在工业上的应用。

E-mail Alert
关键词 金属有机骨架金属氧化物制备催化复合材料    

Metal oxide@MOF(metal-organic framework) composite materials have emerged as a new class of functional materials and attracted considerable interests in many fields due to the unique properties in combination of metal oxide with MOF, which has been an important research direction of MOF materials in recent years. In this review, we systematically summarize the research progress towards various synthetic methods for metal oxide@MOF composite materials, such as epitaxial growth method, gas phase infiltration method and template method. The advantages and disadvantages of these methods are discussed, respectively. Applications of metal oxide@MOFs composite materials in adsorption and separation, catalysis, sensing, biomedical and potential applications of metal oxide@MOFs composite materials in electrochemical research are also discussed. In order to expand its application in industry, the improvement of synthetic methods, the preparation of new functional metal oxides and the exploration of new structures are proposed as the main future research and development directions of metal oxide@MOFs composite materials.

Key wordsmetal-organic framework    metal oxide    fabrication    catalysis    composites
收稿日期: 2017-10-26           接受日期: 2018-01-16
通讯作者: VERPOORTFrancis     E-mail:
张攀, 周奎, CHAEMCHUENSomboon, 陈宬, VERPOORTFrancis. 金属氧化物@金属有机骨架复合材料研究进展[J]. 应用化学, 2018, 35(4): 369-380.
ZHANG Pan, ZHOU Kui, CHAEMCHUEN Somboon, CHEN Cheng, VERPOORT Francis. Progress of Metal Oxide and Metal-Organic Framework Composite Materials. Chinese Journal of Applied Chemistry, 2018, 35(4): 369-380.
链接本文:      或
Fig.1Schematic representation of the step-by-step synthesis strategy(a); TEM images of individual core-shell magnetic microsphere of Fe3O4@[Cu3(btc)2](b~g)[15]
Fig.2Preparation procedure of Fe3O4@ZIF-8 core-shell microspheres(a), TEM images of ZIF-8 growth on functionalized Fe3O4(b) and SEM images of the Fe3O4 particles(c)[19]
Fig.3Schematic illustration of ZnO@ZIF-8 nanorods synthesized via the Self-Template strategy[25]
Fig.4Schematic representation of the general microchemical process[30]
Fig.5XRD patterns and SEM images of the Fe3O4@ZIF-8 particles
a.XRD patterns of the Fe3O4, Fe3O4@ZIF-8 and Fe3O4(JCPDS 19-0629) particles and the simulated single-crystal XRD pattern of ZIF-8; b.SEM images of Fe3O4; c.SEM images of Fe3O4@ZIF-8 particles[30]
Fig.6A schematic illustration of MB degradation over the MIL-100(Fe) photocatalyst under light irradiation(inset:the chemical structure of MIL-100(Fe) and the electron transfer processes that occurs in MIL-100(Fe) when irradiated by light)[17]
Fig.7Schematic diagram of separation of electron-hole pairs over BiVO4/MIL-101 composite under visible light[40]
图8TiO2@NH2-UiO-66复合材料光催化还原CO2 示意图[41]
Fig.8Proposed photocatalytic CO2 reduction pathway over TiO2/NH2-UiO-66[41]
Fig.9Reaction scheme(a) ; Microfluidic catalytic system for Knoevenagel condensation(b)[30]
Fig.10Photocurrent response of ZnO nanorod arrays against H2O2(0.1 mmol) and AA(0.1 mmol)[25]
图1130 ℃下不同吸附剂对MB(a)和Cr(Ⅵ)(b)的等温吸附曲线[51]
Fig.11Adsorption isotherms for MB(a) and Cr(Ⅵ)(b) on different adsorbents at 303 K[51]
[1] Abrahams B,Hoskins B,Michail D,et al. Assembly of Porphyrin Building Blocks into Network Structures with Large Channels[J]. Nature,1994,369(6483):727-729.
[2] Li H,Eddaoudi M,O' keeffe M,et al. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework[J]. Nature,1999,402(6759):276-279.
[3] Hupp J T,Poeppelmeier K R.Better Living Through Nanopore Chemistry[J]. Science,2005,309(5743):2008-2009.
[4] Silva P,Vilela S M,Tom J P,et al. Multifunctional Metal-Organic Frameworks:From Academia to Industrial Applications[J]. Chem Soc Rev,2015,44(19):6774-6803.
[5] Chaemchuen S,Kabir N A,Zhou K,et al. Metal-Organic Frameworks for Upgrading Biogas via CO2 Adsorption to Biogas Green Energy[J]. Chem Soc Rev,2013,42(24):9304-9332.
[6] Czaja A U,Trukhan N,Mller U.Industrial Applications of Metal-Organic Frameworks[J]. Chem Soc Rev,2009,38(5):1284-1293.
[7] Sun C Y,Qin C,Wang C G,et al. Chiral Nanoporous Metal-Organic Frameworks with High Porosity as Materials for Drug Delivery[J]. Adv Mater,2011,23(47):5629-5632.
[8] Li S,Huo F. Metal-Organic Framework Composites:From Fundamentals to Applications[J]. Nanoscale,2015,7(17)7482-7501.
[9] Zhu Q L,Xu Q.Metal-Organic Framework Composites[J]. Chem Soc Rev,2014,43(16):5468-5512.
[10] Horiuchi Y,Toyao T,Saito M,et al. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-functionalized Ti(Ⅳ) Metal-Organic Framework[J]. J Phys Chem C,2012,116(39):20848-20853.
[11] Li Z,Yin L.Sandwich-like Reduced Graphene Oxide Wrapped MOF-derived ZnCo2O4-ZnO-C on Nickel Foam as Anodes for High Performance Lithium Ion Batteries[J]. J Mater Chem A,2015,3(43):21569-21577.
[12] Lykourinou V,Chen Y,Wang X S,et al. Immobilization of MP-11 into a Mesoporous Metal-Organic Framework, MP-11@mesoMOF:A New Platform for Enzymatic Catalysis[J]. J Am Chem Soc,2011,133(27):10382-10385.
[13] Bradshaw D,Garai A,Huo J.Metal-Organic Framework Growth at Functional Interfaces:Thin Films and Composites for Diverse Applications[J]. Chem Soc Rev,2012,41(6):2344-2381.
[14] Uemura T,Yanai N,Kitagawa S.Polymerization Reactions in Porous Coordination Polymers[J]. Chem Soc Rev ,2009,38(5):1228-1236.
[15] Ke F,Qiu L G,Yuan Y P,et al. Fe3O4@MOF Core-Shell Magnetic Microspheres with a Designable Metal-Organic Framework Shell[J]. J Mater Chem,2012,22(19):9497-9500.
[16] Chen X,Ding N,Zang H,et al. Fe3O4@MOF Core-Shell Magnetic Microspheres for Magnetic Solid-Phase Extraction of Polychlorinated Biphenyls from Environmental Water Samples[J]. J Chromatogr A,2013,1304(16):241-245.
[17] Zhang C F,Qiu L G,Ke F,et al. A Novel Magnetic Recyclable Photocatalyst Based on a Core-Shell Metal-Organic Framework Fe3O4@MIL-100(Fe) for the Decolorization of Methylene Blue Dye[J]. J Mater Chem A,2013,1(45):14329-14334.
[18] Sun X,Gao G,Yan D,et al. Synthesis and Electrochemical Properties of Fe3O4@MOF Core-Shell Microspheres as an Anode for Lithium Ion Battery Application[J]. Appl Surf Sci,2017,405:52-59.
[19] Zhang T,Zhang X,Yan X,et al. Synthesis of Fe3O4@ZIF-8 Magnetic Core-Shell Microspheres and Their Potential Application in a Capillary Microreactor[J]. Chem Eng J,2013,228(28):398-404.
[20] Zhang Y,Lan D,Wang Y,et al. MOF-5 Decorated Hierarchical ZnO Nanorod Arrays and Its Photoluminescence[J]. Physica E,2011,43(6):1219-1223.
[21] Zacher D,Baunemann A,Hermes S,et al. Deposition of Microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at Alumina and Silica Surfaces Modified with Patterned Self Assembled Organic Monolayers:Evidence of Surface Selective and Oriented Growth[J]. J Mater Chem,2007,17(27):2785-2792.
[22] Hermes S,Schrter M K,Schmid R,et al. Metal@MOF:Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition[J]. Angew Chem Int Ed,2005,44(38):6237-6241.
[23] Hermes S,Schrder F,Amirjalayer S,et al. Loading of Porous Metal-Organic Open Frameworks with Organometallic CVD Precursors: Inclusion Compounds of the Type [LnM]a@MOF-5[J]. J Mater Chem,2006,16(25):2464-2472.
[24] Esken D,Noei H,Wang Y,et al. ZnO@ZIF-8:Stabilization of Quantum Confined ZnO Nanoparticles by a Zinc Methylimidazolate Framework and Their Surface Structural Characterization Probed by CO2 Adsorption[J]. J Mater Chem,2011,21(16):5907-5915.
[25] Zhan W W,Kuang Q,Zhou J Z,et al. Semiconductor@Metal-Organic Framework Core-Shell Heterostructures:A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response[J]. J Am Chem Soc,2013,135(5):1926-1933.
[26] Wang F,Jia S,Li D,et al. Self-template Synthesis of CuO@Cu3(BTC)2 Composite and Its Application in Cumene Oxidation[J]. Mater Lett,2016,164:72-75.
[27] Yang J,Zhang F,Lu H,et al. Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene[J]. Angew Chem Int Ed,2015,54(37):10889-10893.
[28] Chen H,Shen K,Chen J,et al. Hollow-ZIF-templated Formation of a ZnO@C-N-Co Core-Shell Nanostructure for Highly Efficient Pollutant Photodegradation[J]. J Mater Chem A,2017,5(20):9937-9945.
[29] Yang J,Ye H,Zhao F,et al. A Novel CuxO Nanoparticles@ZIF-8 Composite Derived From Core-Shell Metal-Organic Frameworks for Highly Selective Electrochemical Sensing of Hydrogen Peroxide[J]. ACS Appl Mater Interfaces,2016,8(31):20407-20414.
[30] Faustini M,Kim J,Jeong G Y,et al. Microfluidic Approach Toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets[J]. J Am Chem Soc,2013,135(39):14619-14626.
[31] Chang N,Li Y X,He D Y,et al. A “Molecule Pump” Prototype for Exceptionally High Efficiency Adsorption and Decomposition of Rhodamine B Based on the TiO2@MIL-100 Composite[J]. Anal Methods-UK,2017,9(3):381-384.
[32] Lee J,Farha O K,Roberts J,et al. Metal-organic Framework Materials as Catalysts[J]. Chem Soc Rev,2009,38(5):1450-1459.
[33] Ma L,Abney C,Lin W.Enantioselective Catalysis with Homochiral Metal-Organic Frameworks[J]. Chem Soc Rev,2009,38(5):1248-1256.
[34] Müller M,Hermes S,Kähler K,et al. Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis[J]. Chem Mater,2008,20(14):4576-4587.
[35] Wang W,Li Y,Zhang R,et al. Metal-Organic Framework as a Host for Synthesis of Nanoscale Co3O4 as an Active Catalyst for CO Oxidation[J]. Catal Commun,2011,12(10):875-879.
[36] Alvaro M,Carbonell E,Ferrer B,et al. Semiconductor Behavior of a Metal-Organic Framework(MOF)[J]. Chem Eur J,2007,13(18):5106-5112.
[37] Mahata P,Madras G,Natarajan S.Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds[J]. J Phys Chem B,2006,110(28):13759-13768.
[38] Schneider J,Matsuoka M,Takeuchi M,et al. Understanding TiO2 photocatalysis:Mechanisms and Materials[J]. Chem Rev,2014,114(19):9919-9986.
[39] CHEN Shijie,TANG Xiaojun,CHEN Xi,et al. Efficiency and Mechanism of Photocatalytic Oxidation of Norfloxacin in Wastewater by C/Fe-Bi2WO6[J]. Chinese J Appl Chem,2017,34(8):936-945(in Chinese). 陈世界,汤晓君,陈茜,等. C/Fe-Bi2WO6光催化氧化诺氟沙星废水的效能及其机理[J]. 应用化学,2017,34(8):936-945.
[40] Xu Y,Lv M,Yang H,et al. BiVO4/MIL-101 Composite Having the Synergistically Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv,2015,5(54):43473-43479.
[41] Crake A,Christoforidis K C,Kafizas A,et al. CO2 Capture and Photocatalytic Reduction Using Bifunctional TiO2/MOF Nanocomposites Under UV-Vis Irradiation[J]. Appl Catal B,2017,210:131-140.
[42] Liu Q,Low Z X,Li L,et al. ZIF-8/Zn2GeO4 Nanorods with an Enhanced CO2 Adsorption Property in an Aqueous Medium for Photocatalytic Synthesis of Liquid Fuel[J]. J Mater Chem A,2013,1(38):11563-11569.
[43] Yan S,Ouyang S,Xu H,et al. Co-ZIF-9/TiO2 Nanostructure for Superior CO2 Photoreduction Activity[J]. J Mater Chem A,2016,4(39):15126-15133.
[44] Cabello J A,Campelo J M,Garcia A,et al. Knoevenagel Condensation in the Heterogeneous Phase Using Aluminum Phosphate-Aluminum Oxide as a New Catalyst[J]. J Org Chem,1984,49(26):5195-5197.
[45] Chen B,Wang L,Xiao Y,et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions[J]. Angew Chem Int Ed,2009,48(3):500-503.
[46] Falcaro P,Riccor,Yazdi A,et al. Application of Metal and Metal Oxide Nanoparticles@MOFs[J]. Coord Chem Rev,2016,307:237-254.
[47] Wehner T,Mandel K,Schneider M,et al. Superparamagnetic Luminescent MOF@Fe3O4/SiO2 Composite Particles for Signal Augmentation by Magnetic Harvesting as Potential Water Detectors[J]. ACS Appl Mater Interfaces,2016,8(8):5445-5452.
[48] GONG Wenming,KE Xiaofen,LI Zhipeng,et al. Adsorption of Methylene Blue by Phosphomolybdiumtungstic Acid Decorated Metal Organic Framework MOF-5[J]. Chinese J Appl Chem,2016,33(9):1047-1055(in Chinese). 龚文朋,柯晓芬,李志鹏,等. 磷钼钨杂多酸修饰金属有机骨架MOF-5复合材料吸附亚甲基蓝[J]. 应用化学,2016,33(9):1047-1055.
[49] Sumida K,Rogow D L,Mason J A,et al. Carbon Dioxide Capture in Metal-Organic Frameworks[J]. Chem Rev,2011,112(2):724-781.
[50] Rowsell J L,Yaghi O M.Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angew Chem Int Ed,2005,44(30):4670-4679.
[51] Xiong Y,Ye F,Zhang C,et al. Synthesis of Magnetic Porous γ-Fe2O3/C@HKUST-1 Composites for Efficient Removal of Dyes and Heavy Metal Ions from Aqueous Solution[J]. RSC Adv,2015,5(7):5164-5172.
[52] Qu Z G,Wang H,Zhang W.Highly Efficient Adsorbent Design Using a Cu-BTC/CuO/Carbon Fiber Paper Composite for High CH4/N2 Selectivity[J]. RSC Adv,2017,7(23):14206-14218.
[53] Cai W,Chu C C,Liu G,et al. Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging[J]. Small,2015,11(37):4806-4822.
[54] Sun C Y,Qin C,Wang X L,et al. Metal-Organic Frameworks as Potential Drug Delivery Systems[J]. Expert Opin Drug Del,2013,10(1):89-101.
[55] Tao Y,Yanan C,Huaiyin C,et al. Controllable Preparation of Two Dimensional Metal- or Covalent Organic Frameworks for Chemical Sensing and Biosensing[J]. Acta Chim Sin,2017,75(4):339-350.
[56] Ke F,Yuan Y P,Qiu L G,et al. Facile Fabrication of Magnetic Metal-Organic Framework Nanocomposites for Potential Targeted Drug Delivery[J]. J Mater Chem,2011,21(11):3843-3848.
[57] Li J,Wang J,Ling Y,et al. Unprecedented Highly Efficient Capture of Glycopeptides by Fe3O4@Mg-MOF-74 Core-Shell Nanoparticles[J]. Chem Commun,2017,53(28):4018-4021.
[58] Wang L,Han Y,Feng X,et al. Metal-Organic Frameworks for Energy Storage: Batteries and Supercapacitors[J]. Coord Chem Rev,2016,307:361-381.
[59] Vinogradov A V,Zaake-hertling H,Hey-hawkins E,et al. The First Depleted Heterojunction TiO2-MOF-Based Solar Cell[J]. Chem Commun,2014,50(71):10210-10213.
[60] Lohe M R,Gedrich K,Freudenberg T,et al. Heating and Separation Using Nanomagnet-Functionalized Metal-Organic Frameworks[J]. Chem Commun,2011,47(11):3075-3077.
[1] 吴诚,肖春生,陈学思. 受阻路易斯酸碱对在高分子聚合上的应用[J]. 应用化学, 2018, 35(9): 1013-1018.
[2] 巫湘坤,詹秋设,张兰,张锁江. 锂电池极片微结构优化及可控制备技术进展[J]. 应用化学, 2018, 35(9): 1076-1092.
[3] 苏娟,陈接胜. 二氧化钛多孔材料及其性能研究进展[J]. 应用化学, 2018, 35(9): 1126-1132.
[4] 龙霞,王亚琼,鞠敏,王政,杨世和. 过渡金属基层状双羟基化合物的调控及其在电化学水氧化中的应用[J]. 应用化学, 2018, 35(8): 881-889.
[5] 刘佳,潘容容,张二欢,李岳美,刘佳佳,徐萌,戎宏盼,陈文星,张加涛. 表面等离子共振热电子注入机理及在光催化与光电催化应用中的研究进展[J]. 应用化学, 2018, 35(8): 890-901.
[6] 黄继梅, 孟瑞晋, 杨金虎. 硫掺杂二氧化钛/碳化钛复合材料的制备及储锂性能[J]. 应用化学, 2018, 35(8): 925-931.
[7] 笪祖林, 赵勇, 施伟东. Bi4V2O11/石墨烯异质结光催化剂的制备及其在降解抗体污染物中应用[J]. 应用化学, 2018, 35(8): 946-955.
[8] 黄继梅, 孟瑞晋, 杨金虎. 硫掺杂二氧化钛/碳化钛复合材料的制备及储锂性能[J]. 应用化学, 2018, 35(8): 0-0.
[9] 郝帅, 蒋冬梅, 张晓腾, 陈俊畅, 夏良树. 水合肼还原金属的研究进展[J]. 应用化学, 2018, 35(7): 756-766.
[10] 石佳, 宋煌旺, 朱祺东, 林强, 朱林华, 刘英豪, 钟万林. 球磨双金属氰催化剂催化CO2/ 环氧丙烷/四氯苯酐三元共聚[J]. 应用化学, 2018, 35(6): 659-664.
[11] 李建华, 王洪泽, 盛兰, 卢志凯, 张晓安. 无墨喷水可重复打印纸工业化制备[J]. 应用化学, 2018, 35(6): 679-686.
[12] 李桂水, 胡旭敏, 程丽君, 郝亮. 表面活性剂修饰碳酸氧铋的制备及光催化性能[J]. 应用化学, 2018, 35(6): 692-699.
[13] 孙墨杰, 吕涛, 徐维林. 微流控合成高活性甲醇氧化碳载铂钌电催化剂[J]. 应用化学, 2018, 35(5): 0-0.
[14] 孙墨杰, 吕涛, 徐维林. 微流控合成高活性甲醇氧化碳载铂钌电催化剂[J]. 应用化学, 2018, 35(5): 564-573.
[15] 石赟, 李孟生, 淡艳妮. 苯甲酰咪唑过氧化反应[J]. 应用化学, 2018, 35(5): 511-517.
Full text



 Chinese Journal of Applied Chemistry
地址:长春市人民大街5625号 邮编:130022
电话:0431-85262016 85262330 传真:0431-85685653 E-mail: